Stat 650 In-Class Final Examination

Instructions. Do any 5 of the 6 problems. All count equally, 20 points each. 100 points is a perfect score. Justify your reasoning with results and theorems or previously solved problems from the class, wherever possible.
(1). Suppose that $X(t)$ is the number of customers in a $\mathbf{M} / \mathbf{M} / 2$ queueing system, with Poisson-process rate- λ arrivals and 2 servers each of whom serve customers in Expon (μ) time. Find $E_{1}\left(V_{0}\right)$ and $E_{2}\left(V_{0}\right)$, where V_{0} is the random waiting time

$$
V_{0}=\inf \{t>0: \quad X(t-) \neq X(t)=0\}
$$

(2). A Markov chain $W(t)$ with nonnegative-integer-valued states has all of its nonzero off-diagonal $(k \neq j)$ transition intensities $q_{k, j}$ given by

$$
\begin{gathered}
\\
q_{0,1}=q_{1,0}=q_{1,2}=1 \\
\text { for } \quad k \geq 2: \quad q_{k, k+1}=3, \quad q_{k, k-1}=q_{k, k-2}=1
\end{gathered}
$$

(a) Show that if the embedded discrete-time chain Y_{n} for $W(t)$ is defined by $Y_{n}=W\left(T_{n}\right)$, then $Y_{n}-\sum_{i=1}^{n} I_{\left[Y_{i-1}=0\right]}$ is a martingale, where $T_{0}=0$ and for $n \geq 1$,

$$
T_{n}=\inf \left\{t>T_{n-1}: \quad W(t) \neq W\left(T_{n-1}\right\}\right.
$$

(b) Find E_{1} (number of times $W(t)$ hits 0 before hitting 10).
(3). A mechanical system runs for a random time T distributed $\operatorname{Uniform}(0,10)$ and is then instantaneously reapired with a new random lifetime distributed the same way and independent of the past. Each operating lifetime is called one 'cycle'. The cost of operating the system is $\$ 10$ per unit time for the first 7 time-units of life within each cycle, and $\$ 15$ per unit time for any time within cycle in excess of 7 .
(a) Derive a renewal equation satisfied by the expectation of the cumulative cost $C(t)$ up to time t. (Let $C(t)$ denote the random cumulative cost and $c(t)$ its expectation.)
(b) Find the long-term cost per cycle and long-term cost per unit time incurred in running the system.
(4). Consider the discrete-time Markov chain X_{k} with state-space $S=$ $\{1,2,3,4,5\}$ and transition-matrix

$$
P=\left(\begin{array}{ccccc}
0.2 & 0.8 & 0 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 & 0 \\
0 & 0.3 & 0.3 & 0.4 & 0 \\
0 & 0 & 0.5 & 0.3 & 0.2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Find $\lim _{n \rightarrow \infty} P_{32}^{n}$.
(b) Starting from state 4, find the expected total number of times that state 3 is hit.
(5). A small population changes according to the following dynamics. When the population size is 0 , a new immigrant arrives after an $\operatorname{Expon}(\alpha)$ waiting time. When the population size is 1,2 , or 3 , each member of the population independently of the others produces an offspring after an $\operatorname{Expon}(\lambda)$ waitingtime. However, at the instant when the population size would have grown to 4 , all population members die (which makes the poulation size then equal to 0 , never 4).
(a). Explain why the time-varying population size $X(t) \in\{0,1,2,3\}$ is a continuous-time Markov chain, and find its intensity matrix.
(b). What proportion of the time, long-term, is the population size equal to 2 ?
(c). In what proportion of $0 \mapsto 0$ cycles does the population have two members for at least twice as long as it has 3 members ?
(6). Let $N_{1}(t), N_{2}(t)$ be independent unit-rate Poisson counting processes for $t \geq 0$.
(a) What is the probability distribution of the number of jumps of $N_{1}(\cdot)$ between the first and second jumps of $N_{2}(\cdot)$?
(b) Let $W_{1}<W_{2}<\cdots$ be the successive jump-times for the process N_{1}, and $V_{1}<V_{2}<\cdots$ the sequence of successive jump-times for N_{2}. What is the conditional expectation of the number of intervals $\left(W_{k}, W_{k+1}\right)$ falling completely within $[0,10]$ which contain exactly one of the jump-times V_{i}, given only that $N_{1}(10)+N_{2}(10)=22$?

