Stat 650 Final Examination

Instructions. On this Exam, each problem counts 20 points, and 100 are possible. The test is closed-book, but you may use 2 (two-sided) pages of notes for reference. Give details and justifications for your answers.
(1). Consider the Markov chain $\left\{X_{n}\right\}_{n \geq 0}$ on state-space $S=\{0,1,2, \ldots\}$ with $X_{0} \equiv 0$ and transition matrix

$$
P=\left(\begin{array}{ccc}
.2 & .8 & 0 \\
.2 & 0 & .8 \\
.2 & .4 & .4
\end{array}\right)
$$

(a) Show that $Y_{n}=I_{\left[X_{n}=0\right]}$ for $n \geq 0$ is a HMC.
(b) Find the probability distribution of T_{0} explicitly.
(c) Find $E_{0}\left(\sum_{k=1}^{T_{0}} I_{\left[X_{k}=1\right]}\right)$ and give a discrete renewal equation satisfied by $E\left(\sum_{k=1}^{n} I_{\left[X_{k}=1\right]}\right)$.
(2). In an $\mathrm{M} / \mathrm{M} / 1$ queue with $q_{n, n+1}=\lambda, q_{n, n-1}=\mu I_{[n>0]}$ for all $n \in S=$ $\{0,1,2, \ldots\}$, assume $\lambda<\mu$ and that the queue starts with initial (time-0) state chosen from the stationary probability distribution. Find the probability that at the time of the first new arrival, the server is idle, i.e., $X\left(S_{1}-\right)=0$, where S_{1} is the time of the first new arrival (i.e., first jump to a larger queue length) after time 0 .
(3). A discrete-time Markov-chain with state-space $S=\{A, B, 1,2, \ldots, 5\}$ is governed by the transition matrix

$$
P=\left(\begin{array}{rrrrrrr}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 4 & 1 / 2 & 0 & 0 & 0 & 1 / 4 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Find $\lim _{n \rightarrow \infty} P_{A j}^{2 n+1}$ for all $j \in S$.
(4). A discrete-time HMC X_{k} with nonnegative-integer states has transition matrix defined as follows: $P_{01}=1$ and

$$
\begin{gathered}
\text { if } \quad k \geq 3: \quad P_{k, k+2}=1 / 2, \quad P_{k, k-1}=1 / 4, \quad P_{k, k-3}=1 / 4 \\
\text { if } \quad k=1,2: \quad P_{k, k+1}=P_{k, k-1}=1 / 2
\end{gathered}
$$

Recall that $T_{0}=\inf \left\{k \geq 1: X_{k}=0\right\}$.
(a) Show that if $X_{0}=i>0$, then $X_{\min \left(k, T_{0}\right)}$ is a martingale.

Note: $X_{\min \left(k, T_{0}\right)}$ is the process which behaves like X_{k} until it hits 0 , but then stays stuck at 0 .
(b) For $0<i<N$, calculate $P_{i}\left(X_{k}\right.$ hits 0 before $\left.N\right)$.
(c) Prove that X_{k} is recurrent.
(5). Let $N_{1}(t)$ and $N_{2}(t)$ be independent Poisson counting processes with respective rates $\lambda, \mu>0$, and define a continuous-time HMC
$X(t)=2 N_{1}(t)-N_{2}(t)$ with state-space S consisting of all integers.
(a) Give the intensity matrix for this HMC, and show that the embedded chain is a discrete-time (possibly biased) random walk on the integers.
(b) Give a necessary and sufficient condition in terms of λ and μ for this HMC to be recurrent.
(c) Give a differential equation for the transition probability $P_{0 k}(t)$ as a function of time t. Do not try to solve it explicitly, but justify in terms of results given in the course that it does have a unique solution for each λ and μ. If λ and μ are such that the HMC is recurrent, what should be the limit of $P_{0 k}(t)$ as $t \rightarrow \infty$?

