STAT 700 Final Exam, 8-10am, Dec. 17, 2022

Instructions. You may use a single notebook page of memory aids for the exam. You may use a calculator if you like, but you need not give a numerically simplified answer in any numerical problem. Explain your reasoning in words, referring to standard results whenever you can state them. The exam has a possible 100 points: do problems 1–3 and either 4 or 5.

(1). (25 points) Suppose that a sample $\underline{X} = (X_1, \ldots, X_n)$ has density $f(x, \theta) =$ $I_{[x\geq 0]} \cdot \theta/(1+x)^{\theta+1}$, where $\theta > 2$ is an unknown parameter.

(a). Show that this is an exponential family of densities, and find the sufficient statistic and its mean and variance.

(b). Find $E_{\theta}(X + 1) = \psi(\theta)$. Is there a UMVUE for this parameter $\psi(\theta)$? (You do not have to calculate it, just show whether it exists.)

(c). Is there an estimator with expectation $\psi(\theta)$ that exactly attains the Cramér-Rao (Information Inequality) lower bound for $\psi(\theta)$? Show why or why not, either by calculation or theoretical argument.

(2). (25 points) Suppose that a sample of 20 *iid* observations X_i each have the density $f(x, \theta) = e^{-(x-\theta)} I_{x \geq \theta}$, where $\theta \geq 0$. Show that there is a UMP test of $H_0: \theta \leq 2$ versus $H_A: \theta \in (2, 4]$, and give an expression (as explicit as you can, but not numerically reduced) for its rejection region.

(3). (25 points) Suppose that X_i for $i = 1, ..., n$ is a sample of Gamma $(3, \lambda)$ random variables on the parameter space $\lambda \in (0, \infty)$, and that we want to find a Bayes optimal estimator of λ based on these data for the loss function $L(\lambda, a) = \lambda \cdot (\lambda - a)^2$ using the prior density $\pi(\lambda) \sim \text{Gamma}(2, 2)$.

(a). (10 points) Find the posterior density of λ , and explain why it can depend on X only through the sufficient statistic \bar{X} for λ .

(b). (5 points) Find the Bayes posterior risk function $E(\int_0^\infty L(\lambda, g(\bar X)) \pi(\lambda) d\lambda \mid \underline{X})$ for the estimator $q(X)$.

(c). (10 points) Using the same prior density as in (a), find the Bayes-optimal estimator of λ , i.e. the estimator $g(X)$ minimizing

$$
r_{\pi}(g(\bar{X})) = E\left(\int_0^{\infty} L(\lambda, g(\bar{X})) \pi(\lambda) d\lambda\right)
$$

DO PROBLEM 4 OR 5, NOT BOTH !

(4). (25 points) Suppose that a decision problem has parameter θ , data \underline{X} , loss function $L(\theta, a)$ and risk function $R(\theta, g)$ for (possibly randomized) decision rule $g(\cdot)$. Show that if the decision rule $\delta(\cdot)$ is admissible and also has the property that $R(\theta, \delta) = c$ is a constant, not varying with θ , then $\delta(\cdot)$ is minimax.

(5). (25 points) A single binary random variable X is observed under one of two probability models parameterized by $\theta \in \{1, 2\}$, where

$$
p_{\theta=1}(X=0) = 1 - p_{\theta=1}(X=1) = \frac{1}{4}
$$
, $p_{\theta=2}(X=0) = 1 - p_{\theta=2}(X=1) = \frac{1}{2}$

The decision problem has two possible pure actions $a = 1, 2$, and a class of randomized decision rules ϕ_b for $b \in [0, 1]$ is defined by

$$
\phi_b(x) = P(a=1 | X = x) = b I_{[x=0]} + (1-b) I_{[x=1]}
$$

The loss function in this problem is given by

$$
L(\theta, a) = I_{[\theta=1, a=2]} + 2 I_{[\theta=2, a=1]}
$$

(a). Find the risk function $R(\theta, \phi_b)$ as a function of b.

(b). Use the result of (a) to show that there is a unique best test ϕ_b in this problem, and find it.

DO PROBLEM 4 OR 5, NOT BOTH !