STAT 700 August 26, 2024

First Problem Set in STAT 700, F24

These 6 problems mostly relate to prerequisite material for Stat 700. The due-date is Wednesday, September 4, 2024, 11:59pm, for a pdf-format upload to the course ELMS page.

(Q1) Suppose that a sequence of independent random variables X_i , $i = 1, 2, \ldots$, has distribitions

 $X_{2k} \sim$ Unif[0, 2] and $X_{2k-1} \sim$ Expon(1) for $k = 1, 2, ...$ Then give the density for the limiting distribution of $\frac{1}{\sqrt{6}}$ $\frac{1}{2n} \sum_{i=1}^{2n} (X_i - 1).$

(Q2) Suppose that a sequence of independent random variables ${Y_i}_{i=1}^n$ have a *location-scale* family of densities, i.e., that for some $\mu \in \mathbb{R}$, $\sigma > 0$ and a known density f_0 on the real line such that $Y_i \sim \frac{1}{\sigma}$ $\frac{1}{\sigma} f_0((x-\mu)/\sigma)$. Prove that for any bounded continuous function $g: \mathbb{R}^n \mapsto \mathbb{R}$,

$$
E(g(Y_1,\ldots,Y_n)) = \int_{\mathbb{R}^n} g(\sigma z_1 + \mu,\ldots,\sigma z_n + \mu) f_0(z_1) f_0(z_2) \cdots f_0(z_n) dz_1 \cdots dz_n \qquad (1)
$$

Use (1) to conclude that if (Z_1, \ldots, Z_n) is an n-tuple of independent random variables with density f_0 , then

$$
(\sigma Z_1 + \mu, \dots, \sigma Z_n + \mu, \dots) \stackrel{\mathcal{D}}{=} (Y_1, \dots, Y_n)
$$
 (2)

(Q3) Suppose that V_1 , V_2 are independent random variables, each with density $f_V(v)$ = $2v I_{[0 < v < 1]},$ and let $W_1 = \min(V_1, V_2), W_2 = \max(V_1, V_2).$

- (a). Reason from first principles to find $P(W_1 \leq s, W_2 > t)$ for all $0 \leq s \leq t \leq 1$.
- (b). Use part (a) to find the joint density of W_1, W_2 .
- (c). Use the density in (b) to find $E(W_1^2 | W_2)$.

(d). Extend the reasoning in parts (a), (b) to find explicitly the joint density of $W_1 = \min(V_1, \ldots, V_m)$, $W_2 = \max(V_1, \ldots, V_m)$, if $V_1, \ldots V_m$ are independent random variables with density f_V , where $m \geq 3$.

(Q4) Use formula (1) to prove that the unknown parameters (μ, σ) are *identifiable* in the sense defined in class, from a sample of observations Y_1, \ldots, Y_n from the location-scale family in (Q2).

(Q5) Jacobian change-of-variable. Suppose that X_1, \ldots, X_4 are independent Expon(1) distributed random variables. Find the joint density of (Y_1, \ldots, Y_4) defined by

$$
Y_1 = 3X_1
$$
, $Y_2 = 2X_2^2$, $Y_3 = X_2 + X_3$, $Y_4 = X_1^4 + 2X_4$

(Q6) Linear Algebra. Let the 5×5 matrix A be defined by $A = c \mathbf{1} \mathbf{1}^{tr} + I_5$, where $c > 0$ is a constant, 1 is the 5-dimensional vector with all entries 1, and I_5 is the 5×5 identity matrix. Find a formula for A^{-1} giving its entries explicitly in terms of c. Hint: spectral decomposition.