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Large-sample Existence of MLEs in Natural Exponential Families

This handout is an expanded detailed proof of Theorem 5.2.2 in Bickel and Doksum.
The context is iid data Xi ∈ Rd, i = 1, . . . , n, with full-rank natural exponential family
density (or probability mass function)

Xi ∼ f(x, θ) = h(x) exp {θ′ T0(x) − A(θ)} , θ ∈ Θ = E ⊂ Rk (1)

where the natural parameter space E is convex and open. Let θ0 ∈ E denote the ‘true’
parameter values for the model governing Xi, and let T (X) =

∑n
i=1 T0(Xi) ∈ Rk. Recall

that ‘full rank’ means that 1 and T0(X) are linearly independent as random variables
and implies that V0 = Varθ0(T0(X1)) = ∇⊗2

θ A(θ0) is positive definite. Also recall that
under these conditions, µ0 ≡ Eθ0(T0(X1)) = ∇θ A(θ0) and that A(θ) is a strictly concave
function on E . Finally, recall that the MLE estimator, if it exists, is the unique solution
of the GMM (General Method of Moments) estimating equation T (X) = A(θ̂).

Bickel and Doksum proved (Theorem 2.3.1) that the MLE exists for the data X with
t0 ≡ T (X) if and only if

(∗) for all c ∈ Rk with ∥c∥ = 1, Pθ0( c
′ (T (X)− t) > 0)

∣∣∣
t=t0

> 0

To prove that this event occurs with arbitrarily large probability when n is large, we
will prove in terms of independent iid Pθ0-distributed samples X = (X1, . . . , Xn), X∗ =
(X∗

1 , . . . , X
∗
n), that

∀ ϵ > 0 : lim inf
n→∞

Pθ0

[
inf

c: ∥c∥=1
Pθ0

{
c′ (T (X)− T (X∗)) > 0

∣∣∣X∗
}

> 0
]
≥ 1 − ϵ (2)

The main ideas of the proof are the Central Limit Theorem (CLT) and the multi-
variate iid normal density being everywhere positive and decreasing as a function of the
norm of its argument. The CLT says that Zn ≡ V

−1/2
0

√
n (T (X) − µ0) has asymptotic

multivariate-normal distribution on Rk with mean 0 and identity variance-matrix. The
CLT says that for fixed large K, which will depend on ϵ in (2), for all sufficiently large n,

Pθ0

[√
n ∥V −1/2

0 (T (X∗) − µ0)∥ ≤ K
]

≥ 1− ϵ (3)

where V
−1/2
0 is the inverse of the symmetric square root of V0, which exists because V0 is

positive definite. Let Bn,K denote the event whose probability is lower-bounded in (3).
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The CLT applied to T (X) also implies for all sufficiently large n,

inf
c: ∥c∥=1

Pθ0

{√
n c′ (T (X)− T (X∗)) > 0

∣∣∣X∗, Bn,k

}
= inf

w: ∥w∥=1
Pθ0

{√
nw′ V

−1/2
0 (T (X)− T (X∗)) > 0

∣∣∣X∗, Bn,k

}
≥ inf

w: ∥w∥=1
Pθ0

{[√
nw′ V

−1/2
0 (T (X)− T (X∗)) > 0

]
∩[

∥
√
nV

−1/2
0 (T (X)− T (X∗))∥ ≤ 1

] ∣∣∣X∗, Bn,k

}
For each unit vector w, the conditional probability in the last line above is the probability
that the asymptoticallyNk(0, Ik×k) distributed random vector Zn falls within a half-ball of

radius 1 centered at
√
nV

−1/2
0 (T (X∗)−µ0) which lies within the large ball BK+1(0) ⊂ Rk.

But such half-balls all have the same volume bk > 0 not depending on 0, and the limiting
multivariate-normal distribution of Zn has density bounded below everywhere on BK+1(0).
Therefore, we have proved that for all large n

inf
c: ∥c∥=1

Pθ0

{√
n c′ (T (X)− T (X∗)) > 0

∣∣∣X∗, Bn,k

}
≥ 1

2
bk (2π)

−k/2 e−(K+1)2/2

The constant on the right-hand side is depressingly small for large K, but all we had to
do is show is that it is positive as long as X∗ satisfies the event Bn,k. The ϵ lost in (3) is
just the (limiting) upper bound for Pθ0(B

c
n,k). So our proof is complete. 2
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