Large-sample Existence of MLEs in Natural Exponential Families

This handout is an expanded detailed proof of Theorem 5.2.2 in Bickel and Doksum. The context is *iid* data $X_i \in \mathbb{R}^d$, i = 1, ..., n, with full-rank natural exponential family density (or probability mass function)

$$X_i \sim f(x,\theta) = h(x) \exp\left\{\theta' T_0(x) - A(\theta)\right\} \quad , \qquad \theta \in \Theta = \mathcal{E} \subset \mathbb{R}^k \tag{1}$$

where the natural parameter space \mathcal{E} is convex and open. Let $\theta_0 \in \mathcal{E}$ denote the 'true' parameter values for the model governing X_i , and let $T(\underline{X}) = \sum_{i=1}^n T_0(X_i) \in \mathbb{R}^k$. Recall that 'full rank' means that 1 and $T_0(X)$ are linearly independent as random variables and implies that $V_0 = \operatorname{Var}_{\theta_0}(T_0(X_1)) = \nabla_{\theta}^{\otimes 2} A(\theta_0)$ is positive definite. Also recall that under these conditions, $\mu_0 \equiv E_{\theta_0}(T_0(X_1)) = \nabla_{\theta} A(\theta_0)$ and that $A(\theta)$ is a strictly concave function on \mathcal{E} . Finally, recall that the MLE estimator, if it exists, is the unique solution of the GMM (General Method of Moments) estimating equation $T(\underline{X}) = A(\hat{\theta})$.

Bickel and Doksum proved (Theorem 2.3.1) that the MLE exists for the data \underline{X} with $t_0 \equiv T(\underline{X})$ if and only if

(*) for all
$$c \in \mathbb{R}^k$$
 with $||c|| = 1$, $P_{\theta_0}(c'(T(\underline{X}) - t) > 0)\Big|_{t=t_0} > 0$

To prove that this event occurs with arbitrarily large probability when n is large, we will prove in terms of independent *iid* P_{θ_0} -distributed samples $\underline{X} = (X_1, \ldots, X_n), \ \underline{X}^* = (X_1^*, \ldots, X_n^*)$, that

$$\forall \epsilon > 0 : \liminf_{n \to \infty} P_{\theta_0} \Big[\inf_{c: \|c\|=1} P_{\theta_0} \Big\{ c' \left(T(\underline{X}) - T(\underline{X}^*) \right) > 0 \, \Big| \, \underline{X}^* \Big\} > 0 \Big] \ge 1 - \epsilon \quad (2)$$

The main ideas of the proof are the Central Limit Theorem (CLT) and the multivariate *iid* normal density being everywhere positive and decreasing as a function of the norm of its argument. The CLT says that $Z_n \equiv V_0^{-1/2} \sqrt{n} (T(\underline{X}) - \mu_0)$ has asymptotic multivariate-normal distribution on \mathbb{R}^k with mean $\underline{0}$ and identity variance-matrix. The CLT says that for fixed large K, which will depend on ϵ in (2), for all sufficiently large n,

$$P_{\theta_0}\left[\sqrt{n} \left\|V_0^{-1/2} \left(T(\underline{X}^*) - \mu_0\right)\right\| \le K\right] \ge 1 - \epsilon \tag{3}$$

where $V_0^{-1/2}$ is the inverse of the symmetric square root of V_0 , which exists because V_0 is positive definite. Let $B_{n,K}$ denote the event whose probability is lower-bounded in (3).

The CLT applied to $T(\underline{X})$ also implies for all sufficiently large n,

$$\inf_{\substack{c: \|c\|=1 \\ w: \|w\|=1}} P_{\theta_0} \left\{ \sqrt{n} c' \left(T(\underline{X}) - T(\underline{X}^*)\right) > 0 \mid \underline{X}^*, B_{n,k} \right\}$$

$$= \inf_{\substack{w: \|w\|=1 \\ w: \|w\|=1}} P_{\theta_0} \left\{ \sqrt{n} w' V_0^{-1/2} \left(T(\underline{X}) - T(\underline{X}^*)\right) > 0 \mid \underline{X}^*, B_{n,k} \right\}$$

$$\geq \inf_{\substack{w: \|w\|=1 \\ w: \|w\|=1}} P_{\theta_0} \left\{ \left[\sqrt{n} w' V_0^{-1/2} \left(T(\underline{X}) - T(\underline{X}^*)\right) > 0 \right] \cap \left[\left\| \sqrt{n} V_0^{-1/2} \left(T(\underline{X}) - T(\underline{X}^*)\right) \right\| \le 1 \right] \mid \underline{X}^*, B_{n,k} \right\}$$

For each unit vector w, the conditional probability in the last line above is the probability that the asymptotically $\mathcal{N}_k(\underline{0}, I_{k \times k})$ distributed random vector Z_n falls within a half-ball of radius 1 centered at $\sqrt{n} V_0^{-1/2} (T(\underline{X}^*) - \mu_0)$ which lies within the large ball $B_{K+1}(\underline{0}) \subset \mathbb{R}^k$. But such half-balls all have the same volume $b_k > 0$ not depending on 0, and the limiting multivariate-normal distribution of Z_n has density bounded below everywhere on $B_{K+1}(\underline{0})$. Therefore, we have proved that for all large n

$$\inf_{c: \, \|c\|=1} P_{\theta_0} \left\{ \sqrt{n} \, c' \left(T(\underline{X}) - T(\underline{X}^*) \right) > 0 \, \Big| \, \underline{X}^*, \, B_{n,k} \right\} \geq \frac{1}{2} \, b_k \, (2\pi)^{-k/2} \, e^{-(K+1)^2/2}$$

The constant on the right-hand side is depressingly small for large K, but all we had to do is show is that it is positive as long as \underline{X}^* satisfies the event $B_{n,k}$. The ϵ lost in (3) is just the (limiting) upper bound for $P_{\theta_0}(B_{n,k}^c)$. So our proof is complete. \Box