
Stat 701 Handout on HW3 Misspecified Model Problem, (C)

In this problem, you are asked to calculate relative efficiency based on the maximum
likelihood estimator in the double-exponential distribution, g(x, µ) = (1/2)e−|x−µ|. The
resulting estimator, the sample median µ̃, can be viewed as an estimating equation
estimator based on the estimating function

ψ(x, µ) = 2 I[x≤µ] − 1 or 2 I[x≥µ] − 1

You are asked to do theoretical calculations involving asymptotic normality of
√
n (µ̃−µ)

with mean 0 and an asymptotic variance that you must calculate for true distribution
either g(x, µ0) or N (µ0, 1). But this estimating function ψ and associated estimator do
not satisfy the assumptions of our Theorem establishing asymptotic normality. Although
there are extended estimating-equation theoretical results in the statistical literature, the
idea for an alternative estimating equation that I sketched in class does not actually
produce the same sample-median estimator.

So what I give here is an explanation, as brief as I can make it, of how to get the
theoretical asymptotic normality of the sample median and compute the variance, so that
you can do problem (C). You will see that there are three steps. To complete Problem
(C) for HW3, I will ask you to take the first two steps as given and complete
only the third one.

Step 1. The sample median is a consistent estimator of the population
median, assuming that the iid observations Xi come from a density fwith
unique median, i.e., one for which the distribution function F (t) =

∫ t

−∞ f(x)dx satisfies
F (µ) = 1/2 and for arbitrarily small δ > 0, F (µ− δ) < 1/2 < F (µ+ δ).

Since we know that the sample median µ̃ is either the order statistic X((n+1)/2) if n is
odd, and (X(n/2) + X(n/2+1))/2 if n is even, if follows that |Fn(µ̃) − 1/2| ≤ 1/n, where
Fn(t) = n−1

∑n
i=1 I[Xi≤t] is the empirical distribution function. Therefore, using [y] to

denote the greatest integer ≤ y, as n→ ∞

P (µ̃ ≥ 1/2 + δ) ≤ P (X[(n+1)/2] ≥ 1/2 + δ) ≤ pbinom([
n+ 1

2
], n, 1/2 + δ) → 0

and a similar argument shows P (µ̃ ≤ µ− δ) → 0. Thus µ̃ is consistent.

Step 2. We know that F (µ) = 1/2 and |Fn(µ) − 1/2| ≤ 1/n. So we look at the
difference between Fn(t) and F (t), which we know is small for large n and fixed t by the
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Law of Large Numbers. In fact, using the central limit theorem, we know for each t that
as n→ ∞ √

n (Fn(t)− F (t))
D−→ a random continuous function

This kind of result is proved in STAT 601 using weak-convergence theory on the space of
continuous functions (or empirical process theory). The implication which we use below
is: for all sequences ϵn ↘ 0 as n→ ∞,

sup
x: |x−µ|≤ϵn

|
√
n (Fn(x)− F (x)) −

√
n (Fn(µ)− F (µ))| P−→ 0 (1)

Step 3. This is the part that you will fill in to complete your asymptotic
variance calculation in Problem (C). We know that F (µ) = 1/2 and |Fn(µ)−1/2| ≤
1/n, and by (1),

√
n (F (µ̃) − 1/2) −

√
n (1/2 − Fn(µ))

P−→ 0 (2)

and also, by the ordinary CLT

√
n (Fn(µ)− 1/2) =

1√
n

n∑
i=1

(I[Xi≤µ] − 1/2)
D−→ N (0, 1/4) (3)

Use these facts to prove the asymptotic normality of
√
n(F (µ̃) − F (µ)), and then use

continuous differentiability of F at µ together with the Delta Method to prove asymptotic
normality of

√
n (µ̃− µ).

The asymptotic variance of
√
n (µ̃ − µ) in Step 3 is what you will use to

complete the Asymptotic Relative Efficiency calculations (separately for f the
standard normal and double-exponential density) in Problem (C).
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