STAT 701 HW1 Solutions,

(1). (\#4.4.14) We wanted exact CIs for this problem.
(a) For μ (with σ^{2} unknown) : $\bar{X} \pm t_{n-1, \alpha / 2} S / \sqrt{n}$.
(b) For σ (with μ unknown) : $\left[\left\{(n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}(1-\alpha / 2)\right\}^{1 / 2},\left\{(n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}(\alpha / 2)\right\}^{1 / 2}\right]$.
(c) A (non-rectangular) confidence region with level $1-\alpha$ for (μ, σ) is defined as follows: let $\quad \alpha^{*}=1-\sqrt{1-\alpha}$ and
$c_{1}=z_{\alpha^{*} / 2}, \quad c_{2}=\left\{(n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}\left(1-\alpha^{*} / 2\right)\right\}^{1 / 2}, \quad c_{3}=\left\{(n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}\left(1-\alpha^{*} / 2\right)\right\}^{1 / 2}$
Then the desired region is

$$
\left\{(\mu, \sigma): \quad \bar{X}-c_{1} \sigma / \sqrt{n} \leq \mu \leq \bar{X}+c_{1} \sigma / \sqrt{n}, \quad c_{2} \leq \sigma \leq c_{3}\right\}
$$

(2). (\#4.5.3) Problem 4.5.2 referred to in this problem is just a one-sided version of the idea we expressed in class that a Confidence Region $C I(\alpha \underline{X})$ of level $1-\alpha$ automatically provides a size α hypothesis test for $H_{0}: \theta=\theta_{0}$ regarding the unknown parameter θ in a statistical problem based on data \underline{X}. The rejection region for that test is $\left\{\underline{X}\right.$: $\quad \theta_{0} \notin C I(\alpha, \underline{X}\}$. That problem also asked you to note that in the one-sided setting $C I(\alpha, \underline{X})=(-\infty, U C B(\alpha, \underline{X})]$ the same test has level α (i.e., size $\leq \alpha$) for $H_{0}^{*}: \theta \geq \theta_{0}$

In this problem, we consider the upper confidence bound for unknown σ^{2} based on normal data given by (4.4.2) in the book, with $\alpha_{1}=\alpha, \alpha_{2}=0$, that is, the UCB is $(n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}(\alpha)$, so the desired test in (a) rejects $H_{0}^{*}: \sigma^{2} \geq \sigma_{0}^{2}$ when $(n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}(\alpha)<\sigma_{0}^{2}$.

It remains to find the power $K\left(\sigma^{2}\right)$ of the test in (a), at values $\sigma^{2}<\sigma_{0}^{2}$. That is, if $W=(n-1) S^{2} / \sigma^{2}$ denotes a χ_{n-1}^{2} distributed random variable under $P_{\sigma^{2}}(\cdot)$, then

$$
K\left(\sigma^{2}\right)=P_{\sigma^{2}}\left((n-1) S^{2} / F_{\chi_{n-1}^{2}}^{-1}(\alpha)<\sigma_{0}^{2}\right)=F_{\chi_{n-1}^{2}}\left(F_{\chi_{n-1}^{2}}^{-1}(\alpha) \cdot\left(\sigma_{0}^{2} / \sigma^{2}\right)\right)
$$

(3). (\#5.3.8(a)-(c)) (a) The likelihood in the normal-data case written in terms of sufficient statistics is
$C-\left(n_{1} / 2\right) \log \left(\sigma_{1}^{2}\right)-n_{2} / 2 \log \left(\sigma_{2}^{2}\right)-\frac{1}{2 \sigma_{1}^{2}}\left\{\left(n_{1}-1\right) S_{1}^{2}+n_{1}\left(\bar{X}-\mu_{1}\right)^{2}\right\}-\frac{1}{2 \sigma_{2}^{2}}\left\{\left(n_{2}-1\right) S_{2}^{2}+n_{2}\left(\bar{X}-\mu_{2}\right)^{2}\right\}$
Regardless of assumptions about the variance, the MLE's for μ_{1}, μ_{2} are respectively \bar{X}, \bar{Y}. So the maximized log-Likelihood under the general hypothesis, with $\hat{\sigma}_{j}^{2}=(1-$ $\left.1 / n_{j}\right) S_{j}^{2}$, is

$$
C-\frac{n_{1}}{2} \log \left(1-1 / n_{1}\right)-\frac{n_{2}}{2} \log \left(1-1 / n_{2}\right)-\frac{n_{1}+n_{2}}{2}-\frac{n_{1}}{2} \log S_{1}^{2}-\frac{n_{2}}{2} \log S_{2}^{2}
$$

The maximum likelihood of σ^{2} under the hypothesis $H: \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ is the pooled MLE $\hat{\sigma}^{2}=\left(n_{1}+n_{2}\right)^{-1}\left(\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right)$. From that it is easy to check that the \log of the Likelihood Ratio Statistic is

$$
-\frac{n_{1}+n_{2}}{2} \log \left(\hat{\sigma}^{2}+\frac{n_{1}}{2} \log S_{1}^{2}+\frac{n_{2}}{2} \log S_{2}^{2}\right.
$$

which is a monotone function of S_{1}^{2} / S_{2}^{2}.
(b). Since $\left(n_{k}-1\right) S_{k}^{2} / \sigma_{k}^{2}$ are independent $\chi_{n_{k}-1}^{2}$ random variables for $k=1,2$, by definition of the $F_{n_{1}, n_{2}}$ distribution the ratio $\left(S_{1}^{2} / \sigma_{1}^{2}\right) /\left(S_{2}^{2} / \sigma_{2}^{2}\right)$ has this distribution.
(c). Now we assume X_{i} has mean μ_{1} and variance σ_{1}^{2} and $\operatorname{Var}\left(Y_{j}\right)=\sigma_{1}^{2}$ while Y_{j} is equal in distribution to $\left(X_{i}-a\right) / b$. Clearly $b=1, a=\mu_{1}-\mu_{2}$, and $\kappa=$ $\operatorname{Var}\left(\left(X_{1}-\mu_{1}\right) / \sigma_{1}=\operatorname{Var}\left(\left(Y_{1}-\mu_{2}\right) / \sigma_{1}\right)\right)$. We also assume that the ratio $n_{2} / n_{1}=\lambda$ is fixed as the sample sizes go to ∞. Then it is easy to check that,

$$
\sqrt{n_{1}}\left(S_{1}^{2}-\sigma_{1}^{2}\right) \stackrel{P}{\approx} \sqrt{n_{1}}\left[\frac{1}{n_{1}} \sum_{i=1}^{n_{1}}\left(X_{1}-\mu_{1}\right)^{2}-\sigma_{1}^{2}\right] \xrightarrow{\mathcal{D}} \mathcal{N}\left(\sigma_{1}^{2}, \kappa \sigma_{1}^{4}\right)
$$

and a similar limit theorem holds (with the same distributional limit) for $\sqrt{n_{2}}\left(S_{2}^{2}-\sigma_{1}^{2}\right)$. Therefore the Delta Method applied, with function $g(x, y)=\left(\sigma_{1}^{2}+x\right) /\left(\sigma_{1}^{2}+y\right)-1$, to

$$
\sqrt{n_{1}}\left(S_{1}^{2} / S_{2}^{2}-1\right)=\sqrt{n_{1}}\left[\frac{\sigma_{1}^{2}+\left(S_{1}^{2}-\sigma_{1}^{2}\right)}{\sigma_{1}^{2}+\left(S_{2}^{2}-\sigma_{2}^{2}\right.}-1\right]
$$

shows that this displayed expression is asymptotically equal to

$$
\sqrt{n_{1}} \frac{S_{1}^{2}-\sigma_{1}^{2}}{\sigma_{1}^{2}}-\frac{1}{\sqrt{\lambda}} \sqrt{n_{2}} \frac{S_{2}^{2}-\sigma_{1}^{2}}{\sigma_{1}^{2}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \kappa(1+1 / \lambda))
$$

It follows that $P\left(\sqrt{n_{1}}\left(S_{1}^{2} / S_{2}^{2}-1\right) \leq \sqrt{\left.\kappa\left(n_{1}+n_{2}\right) / n_{2}\right)} \Phi^{-1}(1-\alpha)\right) \rightarrow 1-\alpha$, which is what we were asked to prove.
(4). (\#5.3.15(b)) This is a slightly disguised version of a Delta Method problem. Let $S_{n}=\sum_{i=1}^{n} Z_{i}^{2} \sim \chi_{n}^{2}$, which has expectation n, and apply the Delta Method Taylor expansion idea to $\left.S_{n} / n\right)^{1 / 3}$. Then

$$
\sqrt{n}\left(\left(\frac{S_{n}}{n}\right)^{1 / 3}-1\right) \approx \frac{1}{3}\left(S_{n} / n-1\right)+O_{P}\left(n^{-1 / 2}\right)
$$

and (5.3.6) tells us that $\operatorname{Var}\left(S_{n} / n\right)=(1 / 3)^{2}(2 / n)+O\left(n^{-3 / 2}\right)$. Therefore,

$$
P\left(S_{n} \leq x\right)=P\left(\sqrt{n}\left(\left(S_{n} / n\right)^{1 / 3}-1\right) \leq \sqrt{n}\left(x^{1 / 3}-1\right)\right) \approx \Phi\left(\sqrt{n}\left(x^{1 / 3}-1\right) / \sqrt{2 / 9}\right.
$$

and we make the approximation slightly better by adding an extra term $2 /(9 n)$ to the centering for $\left(S_{n} / n\right)^{1 / 3}$ using a second Taylor series term, since
$E\left(\left(S_{n} / n\right)^{1 / 3}\right) \approx E\left[1+(1 / 3)\left(S_{n} / n-1\right)+(1 / 2)(1 / 3)(-2 / 3)\left(S_{n} / n-1\right)^{2}\right]=1-2 /(9 n)$
(A). The main idea here is to use the identity that the probability mass function with parameter a identically sums to 1 . The Method of Moments in this problem is based on the moment formulas
$E\left(W_{1}\right)=\sum_{k=1}^{\infty} \frac{k^{\alpha+1} e^{-k}}{C(\alpha, 0)}=\frac{C(\alpha+1,0)}{C(\alpha, 0)} \quad, \quad E\left(W_{1}^{2}\right)=\sum_{k=1}^{\infty} \frac{k^{\alpha+2} e^{-k}}{C(\alpha, 0)}=\frac{C(\alpha+2,0)}{C(a, 0)}$ and $\operatorname{Var}\left(W_{1}\right)=(C(\alpha, 0))^{-2}\left(C(\alpha+2,0) C(\alpha, 0)-C(\alpha+1,0)^{2}\right)$.

The canonical exponential family representation $p(w, \alpha)=e^{-k} \cdot \exp (\alpha \log (k)-$ $\log (C(\alpha, 0))$, i.e. in the exponential family, $A(\alpha) \equiv \log (C(\alpha, 0)$. The derivatives of $A(\cdot)$ are given by

$$
A^{\prime}(\alpha)=C(\alpha, 1) / C(\alpha, 0) \quad, \quad A^{\prime \prime}(\alpha)=C(\alpha, 2) / C(\alpha, 0)-(C(\alpha, 1) / C(\alpha, 0))^{2}
$$

and the per-observation Fisher Information about α is $I(\alpha)=A^{\prime \prime}(\alpha)$.
If the function g is the inverse function of $C(a+1,0) / C(a, 0)$, i.e., $g(r)$ is the solution of $C(a+1,0) / C(a, 0)=r$, then the method of moment estimator of α is $\tilde{\alpha}=g(\bar{W})$, and $\sqrt{n}(g(\bar{W})-\alpha)$ is asymptotically normally distributed with mean 0 and variance given according to the Delta Method by $\left(g^{\prime}(\rho)\right)^{2} \cdot \operatorname{Var}\left(W_{1}\right)$, where $\rho=C(\alpha+1,0) / C(\alpha, 0)$. Since

$$
g^{\prime}(\rho)=1 / \frac{d}{d \alpha}\{C(\alpha+1,0) / C(\alpha, 0)\}=(C(\alpha+1,1) C(\alpha, 0)-C(\alpha+1,0) C(\alpha, 1))^{-1}(C(\alpha, 0))^{2}
$$

we conclude

$$
\operatorname{a.var}(\tilde{\alpha})=(C(\alpha, 0))^{2} \frac{C(\alpha+2,0) C(\alpha, 0)-C(\alpha+1,0)^{2}}{(C(\alpha+1,1) C(\alpha, 0)-C(\alpha+1,0) C(\alpha, 1))^{2}}
$$

and the Asymptotic Relative Efficiency is $1 / A^{\prime \prime}(\alpha)$ divided by a.var $(\tilde{\alpha})$.
(B). Let $T_{1}=n^{-1} \sum_{i=1}^{n}\left(X_{i}+Y_{i}\right)^{2}, \quad T_{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)^{2}$. Then $E\left(T_{1}+T_{2}\right) / 4=$ $\sigma_{1}^{2}, \quad E\left(T_{1}-T_{2}\right) / 4=\rho \sigma^{2}$. So the generalized method of moments estimator of $\rho \sigma^{2}$ is
$\left(T_{1}-T_{2}\right) / 4=n^{-1} \sum_{i=1}^{n} X_{i} Y_{i}$, and its asymptotic variance (after stripping the factor $1 / n)$ is $\operatorname{Var}\left(X_{1} Y_{1}\right)=$
$E\left(X_{1}^{2} Y_{1}^{2}\right)-\rho^{2} \sigma^{4}=E\left(X_{1}^{2}\left(Y_{1}-\rho X_{1}+\rho X_{1}\right)^{2}\right)-\rho^{2} \sigma^{4}=\sigma^{4}\left(1-2 \rho^{2}\right)+\rho^{2} E\left(X_{1}^{4}\right)=\left(1+\rho^{2}\right) \sigma^{4}$
This is to be compared to the inverse Fisher information, based on the log-density (for a single observation $\left(X_{i}, Y_{i}\right)$

$$
-\log (2 \pi)-\frac{1}{2} \log \left(\left(1-\rho^{2}\right) \sigma^{4}\right)-\left(x^{2}+y^{2}-2 \rho x y\right) /\left(2 \sigma^{2}\left(1-\rho^{2}\right)\right)
$$

The (per-observation) Fisher Information matrix for $\left(\sigma^{2}, \rho\right)$ is

$$
\left(\begin{array}{rr}
\sigma^{-4} & \rho /\left(\left(1-\rho^{2}\right) \sigma^{2}\right) \\
\rho /\left(\left(1-\rho^{2}\right) \sigma^{2}\right) & \left(3+5 \rho^{2}\right) /\left(1-\rho^{2}\right)^{2}
\end{array}\right)
$$

The inverse Fisher Information is

$$
\frac{1}{3+4 \rho^{2}}\left(\begin{array}{rr}
\sigma^{4}\left(3+5 \rho^{2}\right) & -\rho \sigma^{2}\left(1-\rho^{2}\right) \\
-\rho \sigma^{2}\left(1-\rho^{2}\right) & \left(1-\rho^{2}\right)^{2}
\end{array}\right)
$$

and the Cramer-Rao lower bound for the function $\psi\left(\sigma^{2}, \rho\right)=\rho \sigma^{2}$ is obtained by preand post-multiplying the last matrix by $\nabla \psi=\left(\rho, \sigma^{2}\right)$. So the Cramer-Rao bound is

$$
\frac{\sigma^{4}}{3+3 \rho^{2}}\left[\rho^{2}\left(3+5 \rho^{2}\right)-2 \rho^{2}\left(1-\rho^{2}\right)+\left(1-\rho^{2}\right)^{2}\right]=\frac{\sigma^{4}\left(1-\rho^{2}+8 \rho^{4}\right)}{3+4 \rho^{2}}
$$

and the relative efficiency is

$$
\frac{1-\rho^{2}+8 \rho^{4}}{\left(3+4 \rho^{2}\right)\left(1+\rho^{2}\right)}
$$

