STAT 701 HW1 Solutions, 2/10/23

(1). (#4.4.14) We wanted exact Cls for this problem.
(a) For pu (with o unknown) : X & t,,_1.4/2.S//n.
(b) For o (with g unknown) : [{(n—1) SQ/FX_Q1 (1—a/2)}2, {(n—1) S'Q/FX_Q1 (a/2)}1/?].
(

¢) A (non-rectangular) confidence region with level 1 —a for (i, o) is defined as follows:

let a*=1-—+/1—a and
C1 = 2o+ )2, o ={(n—1) SQ/F);%:(l—a*/Q)}l/Q, ez ={(n—1) S'Z/FX_?I:(1—a*/2)}1/2
Then the desired region is

{(mo): X—co/Vn<p<X+aoc/vn, w<o<c }

(2). (#4.5.3) Problem 4.5.2 referred to in this problem is just a one-sided version
of the idea we expressed in class that a Confidence Region CI(aX) of level 1 — «
automatically provides a size a hypothesis test for Hy : = 6 regarding the unknown
parameter ¢ in a statistical problem based on data X. The rejection region for that
testis {X : 6y ¢ CI(a, X}. That problem also asked you to note that in the one-sided
setting C'I(a, X) = (—o0, UCB(a, X)] the same test has level « (i.e., size < «) for
Hi: 0>46,

In this problem, we consider the upper confidence bound for unknown o2 based
on normal data given by (4.4.2) in the book, with a; = «a,as = 0, that is, the
UCBis (n — 1) SQ/FX}1 1(Oz), so the desired test in (a) rejects Hi : o > 02 when
(n—1) S2/FX}1 1(oz) <ol

It remains to find the power K(0?) of the test in (a), at values 0% < 02. That is, if
W = (n —1)5?/0? denotes a x2_; distributed random variable under P,(-), then

K(o®) = Pp((n—1)S*/F3" (a) <o5) = Fa (F.' (@) (05/0%))

Xn—l

(3). (#5.3.8(a)-(c)) (a) The likelihood in the normal-data case written in terms of

sufficient statistics is
1 - 1 _
C—(n1/2)log(07)—na/2log(03) — @{(m—l)Sernl(X—m)Q - W{(”2—1)5§+n2(X—/~L2)2}
i 2

Regardless of assumptions about the variance, the MLE’s for ui, s are respectively
X, Y. So the maximized log-Likelihood under the general hypothesis, with 6]2. =(1-
1/n;) S7, is

2 2

n1 + N nq |

C—% log(1—1/ny) — % log(1 —1/ng) — og 57 — % log S3
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The maximum likelihood of 02 under the hypothesis H : 0 = 02 = 02 is the pooled
MLE 62 = (ny +n2) ' ((ny — 1)S% + (ny — 1)S3). From that it is easy to check that the
log of the Likelihood Ratio Statistic is

n1+n2

. n n
log (6% + 71 log S + 72 log S2

which is a monotone function of S3/S3.

(b). Since (nj — 1)Si/o; are independent x2 _; random variables for k = 1,2, by
definition of the F,, ,, distribution the ratio (S?/07)/(S3/03) has this distribution.

(c). Now we assume X; has mean p; and variance of and Var(Y;) = o7 while
Y; is equal in distribution to (X; — a)/b. Clearly b = 1,a = p3 — po, and kK =
Var((X; — p1)/o1 = Var((Yy — po)/o1)). We also assume that the ratio ny/n; = A is
fixed as the sample sizes go to co. Then it is easy to check that,
1«

> (= m)? = o3| B N, ko)

i=1

P

Vi (SE = af) & i |-

ny

and a similar limit theorem holds (with the same distributional limit) for \/nz (S5 —o71).
Therefore the Delta Method applied, with function g(z,y) = (¢ +z)/(c? +y) — 1, to

Vi(S1/95 = 1) = \/”_1[01%+((§2§:(f2) -1

shows that this displayed expression is asymptotically equal to

S%—O’ 2
it L e

07

B ON(0, 5 (1+1/X)

1

It follows that P(y/n1 (S3/5% —1) < \/k(n1 + na)/ng) @ 1(1—a)) — 1—a, which is

what we were asked to prove.

(4). (#5.3.15(b)) This is a slightly disguised version of a Delta Method problem.
Let S, = >, Z? ~ x2, which has expectation n, and apply the Delta Method Taylor
expansion idea to S, /n)'/3. Then

1/3
vn( (&) —1) = %(Sn/n —1) + Op(n/?)

and (5.3.6) tells us that Var(S,/n) = (1/3)%(2/n) + O(n=3/?). Therefore,
P(S, <) = P(Vn((Sp/n)"* =1) < Vn(a'? = 1)) = o(Vn (2 = 1) //2/9
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and we make the approximation slightly better by adding an extra term 2/(9n) to the
centering for (S, /n)'/? using a second Taylor series term, since

E((8a/n)"?) = E{1+ (1/3)(Su/n — 1) + (1/2)(1/3)(=2/3)(Su/n — 1)2] = 1-2/(9n)

(A). The main idea here is to use the identity that the probability mass function
with parameter a identically sums to 1. The Method of Moments in this problem is
based on the moment formulas

L kotlek C(a+1,0) L kotZeh Cla+2,0)
E = - ‘ E 2 = = ’
(W) ; Cla0) ~ o) o FOW ; (@, 0) C(a,0)

and Var(W;) = (C(a,0))"2 (C(a+2,0)C(a,0) — C(a+ 1,0)?).

The canonical exponential family representation p(w,«) = e " - exp(alog(k) —
log(C(a,0)), i.e. in the exponential family, A(a) = log(C(«,0). The derivatives of
A(-) are given by

—k

Alla) = C(a, 1)/C (e, 0) A'(a) = C(a,2)/C(a,0) — (C(a, 1)/C(a, 0))?

and the per-observation Fisher Information about « is I(a) = A" ().

If the function g is the inverse function of C'(a+1,0)/C(a,0), i.e., g(r) is the solution
of C(a+1,0)/C(a,0) = r, then the method of moment estimator of a is & = g(W), and
V1 (g(W) — «) is asymptotically normally distributed with mean 0 and variance given
according to the Delta Method by (¢'(p))? - Var(W;), where p = C(a+1,0)/C(a,0).
Since

d(p) = 1/%{0(%1,0)/0(04,0)} = (C(a+1,1)C(a, 0)—C(a+1,0)C(a, 1)) H(C(e,0))?

we conclude

O(a+2,0)Cla,0) — Cla +1,0)?

avar(@) = (OO Er T 100, 0) - Ofa + 1.0)0(a )7

and the Asymptotic Relative Efficiency is 1/A”(«) divided by a.var(a).

(B) Let T = nt Z?Zl(XZ‘l—Y;)Q, Ty = nt Z?:1<XZ —Y;)z Then E(Tl +T2)/4 =
o2, E(Ty —Ty)/4 = po®. So the generalized method of moments estimator of po? is
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(Th — Ty)/4 =n"t Y " | X;Y;, and its asymptotic variance (after stripping the factor
1/n)is Var(X Y;) =

E(X{Y?)—pPo! = E(X(Yi—pX1+pX1)?)—p’o" = o*(1-20) +p? E(X}) = (1+p%)0*

This is to be compared to the inverse Fisher information, based on the log-density (for
a single observation (X;,Y;)

1
—log(2m) — 5 log((1 = p*)o) — (&% +y° = 2pzy)/(20°(1 = p°))
The (per-observation) Fisher Information matrix for (o2, p) is

( ot p/((1 = p*)o?) )
p/((1=p*)a®) (3+5p%) /(1 —p*)?

The inverse Fisher Information is

1 o' (3+5p%) —po*(l—p*)
344p% \ —po*(l—p?) (1—p?)?
and the Cramer-Rao lower bound for the function (02, p) = po? is obtained by pre-

and post-multiplying the last matrix by V¢ = (p,0?). So the Cramer-Rao bound

1S
4

o
3+ 3p?

and the relative efficiency is

ot (1—p*+8p")
3+ 4p?

PP(3+5p%) = 2p°(1 = p*) + (1 - ,oz)?} =

1—p*+8p!
B+ 401+ )




