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(1). (#4.4.14) We wanted exact CIs for this problem.

(a) For µ (with σ2 unknown) : X̄ ± tn−1,α/2 S/
√
n.

(b) For σ (with µ unknown) : [{(n−1)S2/F−1
χ2
n−1

(1−α/2)}1/2, {(n−1)S2/F−1
χ2
n−1

(α/2)}1/2].
(c) A (non-rectangular) confidence region with level 1−α for (µ, σ) is defined as follows:
let α∗ = 1−

√
1− α and

c1 = zα∗/2, c2 = {(n−1)S2/F−1
χ2
n−1

(1−α∗/2)}1/2, c3 = {(n−1)S2/F−1
χ2
n−1

(1−α∗/2)}1/2

Then the desired region is

{(µ, σ) : X̄ − c1 σ/
√
n ≤ µ ≤ X̄ + c1 σ/

√
n, c2 ≤ σ ≤ c3 }

(2). (#4.5.3) Problem 4.5.2 referred to in this problem is just a one-sided version
of the idea we expressed in class that a Confidence Region CI(αX) of level 1 − α
automatically provides a size α hypothesis test for H0 : θ = θ0 regarding the unknown
parameter θ in a statistical problem based on data X. The rejection region for that
test is {X : θ0 /∈ CI(α,X}. That problem also asked you to note that in the one-sided
setting CI(α,X) = (−∞, UCB(α,X)] the same test has level α (i.e., size ≤ α) for
H∗

0 : θ ≥ θ0
In this problem, we consider the upper confidence bound for unknown σ2 based

on normal data given by (4.4.2) in the book, with α1 = α, α2 = 0, that is, the
UCB is (n − 1)S2/F−1

χ2
n−1

(α), so the desired test in (a) rejects H∗
0 : σ2 ≥ σ2

0 when

(n− 1)S2/F−1
χ2
n−1

(α) < σ2
0.

It remains to find the power K(σ2) of the test in (a), at values σ2 < σ2
0. That is, if

W = (n− 1)S2/σ2 denotes a χ2
n−1 distributed random variable under Pσ2(·), then

K(σ2) = Pσ2((n− 1)S2/F−1
χ2
n−1

(α) < σ2
0) = Fχ2

n−1
(F−1

χ2
n−1

(α) · (σ2
0/σ

2))

(3). (#5.3.8(a)-(c)) (a) The likelihood in the normal-data case written in terms of
sufficient statistics is

C−(n1/2) log(σ
2
1)−n2/2 log(σ

2
2)−

1

2σ2
1

{(n1−1)S2
1+n1(X̄−µ1)

2}− 1

2σ2
2

{(n2−1)S2
2+n2(X̄−µ2)

2}

Regardless of assumptions about the variance, the MLE’s for µ1, µ2 are respectively
X̄, Ȳ . So the maximized log-Likelihood under the general hypothesis, with σ̂2

j = (1−
1/nj)S

2
j , is

C − n1

2
log(1− 1/n1)−

n2

2
log(1− 1/n2)−

n1 + n2

2
− n1

2
logS2

1 −
n2

2
logS2

2

1



The maximum likelihood of σ2 under the hypothesis H : σ2
1 = σ2

2 = σ2 is the pooled
MLE σ̂2 = (n1+n2)

−1((n1− 1)S2
1 +(n2− 1)S2

2). From that it is easy to check that the
log of the Likelihood Ratio Statistic is

− n1 + n2

2
log(σ̂2 +

n1

2
logS2

1 +
n2

2
logS2

2

which is a monotone function of S2
1/S

2
2 .

(b). Since (nk − 1)S2
k/σ

2
k are independent χ2

nk−1 random variables for k = 1, 2, by
definition of the Fn1,n2 distribution the ratio (S2

1/σ
2
1)/(S

2
2/σ

2
2) has this distribution.

(c). Now we assume Xi has mean µ1 and variance σ2
1 and V ar(Yj) = σ2

1 while
Yj is equal in distribution to (Xi − a)/b. Clearly b = 1, a = µ1 − µ2, and κ =
Var((X1 − µ1)/σ1 = Var((Y1 − µ2)/σ1)). We also assume that the ratio n2/n1 = λ is
fixed as the sample sizes go to ∞. Then it is easy to check that,

√
n1 (S

2
1 − σ2

1)
P
≈

√
n1

[ 1

n1

n1∑
i=1

(X1 − µ1)
2 − σ2

1

]
D→ N (σ2

1, κσ
4
1)

and a similar limit theorem holds (with the same distributional limit) for
√
n2 (S

2
2−σ2

1).
Therefore the Delta Method applied, with function g(x, y) = (σ2

1 + x)/(σ2
1 + y)− 1, to

√
n1(S

2
1/S

2
2 − 1) =

√
n1

[σ2
1 + (S2

1 − σ2
1)

σ2
1 + (S2

2 − σ2
2

− 1
]

shows that this displayed expression is asymptotically equal to

√
n1
S2
1 − σ2

1

σ2
1

− 1√
λ

√
n2
S2
2 − σ2

1

σ2
1

D→ N (0, κ (1 + 1/λ))

It follows that P (
√
n1 (S

2
1/S

2
2 − 1) ≤

√
κ(n1 + n2)/n2) Φ

−1(1−α)) → 1−α, which is
what we were asked to prove.

(4). (#5.3.15(b)) This is a slightly disguised version of a Delta Method problem.
Let Sn =

∑n
i=1 Z

2
i ∼ χ2

n, which has expectation n, and apply the Delta Method Taylor
expansion idea to Sn/n)

1/3. Then

√
n(

(
Sn

n

)1/3

− 1) ≈ 1

3
(Sn/n− 1) + OP (n

−1/2)

and (5.3.6) tells us that Var(Sn/n) = (1/3)2 (2/n) + O(n−3/2). Therefore,

P (Sn ≤ x) = P (
√
n ((Sn/n)

1/3 − 1) ≤
√
n (x1/3 − 1)) ≈ Φ(

√
n (x1/3 − 1) /

√
2/9

2



and we make the approximation slightly better by adding an extra term 2/(9n) to the
centering for (Sn/n)

1/3 using a second Taylor series term, since

E((Sn/n)
1/3) ≈ E

[
1 + (1/3)(Sn/n− 1) + (1/2)(1/3)(−2/3)(Sn/n− 1)2

]
= 1− 2/(9n)

(A). The main idea here is to use the identity that the probability mass function
with parameter a identically sums to 1. The Method of Moments in this problem is
based on the moment formulas

E(W1) =
∞∑
k=1

kα+1 e−k

C(α, 0)
=

C(α + 1, 0)

C(α, 0)
, E(W 2

1 ) =
∞∑
k=1

kα+2 e−k

C(α, 0)
=

C(α + 2, 0)

C(a, 0)

and Var(W1) = (C(α, 0))−2 (C(α + 2, 0)C(α, 0)− C(α + 1, 0)2).
The canonical exponential family representation p(w, α) = e−k · exp(α log(k) −

log(C(α, 0)), i.e. in the exponential family, A(α) ≡ log(C(α, 0). The derivatives of
A(·) are given by

A′(α) = C(α, 1)/C(α, 0) , A′′(α) = C(α, 2)/C(α, 0)− (C(α, 1)/C(α, 0))2

and the per-observation Fisher Information about α is I(α) = A′′(α).

If the function g is the inverse function of C(a+1, 0)/C(a, 0), i.e., g(r) is the solution
of C(a+1, 0)/C(a, 0) = r, then the method of moment estimator of α is α̃ = g(W̄ ), and√
n (g(W̄ )−α) is asymptotically normally distributed with mean 0 and variance given

according to the Delta Method by (g′(ρ))2 ·Var(W1), where ρ = C(α+ 1, 0)/C(α, 0).
Since

g′(ρ) = 1/
d

dα
{C(α+1, 0)/C(α, 0)} = (C(α+1, 1)C(α, 0)−C(α+1, 0)C(α, 1))−1(C(α, 0))2

we conclude

a.var(α̃) = (C(α, 0))2
C(α + 2, 0)C(α, 0)− C(α + 1, 0)2

(C(α + 1, 1)C(α, 0)− C(α + 1, 0)C(α, 1))2

and the Asymptotic Relative Efficiency is 1/A′′(α) divided by a.var(α̃).

(B). Let T1 = n−1
∑n

i=1(Xi+Yi)
2, T2 = n−1

∑n
i=1(Xi−Yi)2. Then E(T1+T2)/4 =

σ2
1, E(T1 − T2)/4 = ρσ2. So the generalized method of moments estimator of ρσ2 is

3



(T1 − T2)/4 = n−1
∑n

i=1Xi Yi, and its asymptotic variance (after stripping the factor
1/n) is Var(X1Y1) =

E(X2
1Y

2
1 )−ρ2σ4 = E(X2

1 (Y1−ρX1+ρX1)
2)−ρ2σ4 = σ4(1−2ρ2)+ ρ2E(X4

1 ) = (1+ρ2)σ4

This is to be compared to the inverse Fisher information, based on the log-density (for
a single observation (Xi, Yi)

− log(2π)− 1

2
log((1− ρ2)σ4) − (x2 + y2 − 2ρxy)/(2σ2(1− ρ2))

The (per-observation) Fisher Information matrix for (σ2, ρ) is(
σ−4 ρ/((1− ρ2)σ2)

ρ/((1− ρ2)σ2) (3 + 5ρ2)/(1− ρ2)2

)
The inverse Fisher Information is

1

3 + 4ρ2

(
σ4(3 + 5ρ2) −ρσ2(1− ρ2)

−ρσ2(1− ρ2) (1− ρ2)2

)
and the Cramer-Rao lower bound for the function ψ(σ2, ρ) = ρσ2 is obtained by pre-
and post-multiplying the last matrix by ∇ψ = (ρ, σ2). So the Cramer-Rao bound
is

σ4

3 + 3ρ2

[
ρ2(3 + 5ρ2)− 2ρ2(1− ρ2) + (1− ρ2)2

]
=

σ4 (1− ρ2 + 8ρ4)

3 + 4 ρ2

and the relative efficiency is
1− ρ2 + 8ρ4

(3 + 4ρ2)(1 + ρ2)

4


