
STAT 701 HW2 Solutions, 2/27/23

(1). (#5.2.4) (a). Write the desired function as γ(ρ), and use the fact that U1 and
Z1 = (V1 − ρU1)/

√
1− ρ2 are independent N (0, 1) random variables. Then

γ(ρ) =

∫ ∞

0

∫ ∞

−ρu1/
√

1−ρ2
ϕ(u1)ϕ(z1) dz1 du1 =

∫ ∞

0

ϕ(u1) Φ(−ρu1/
√

1− ρ2) du1

Then γ(0) = 1/4 and

γ′(ρ) =
−1

2π

∫ ∞

0

u1
(1− ρ2)1/2

e−u2
1/(2(1−ρ2)) du1 =

−1

2π
(1− ρ2)1/2

and the desired formula uis the unique solution of this ordinary differential equation.

(b). This is an obvious conclusion from the Law of Large Numbers, given our
class discussion of Generalized Method of Moments estimators, if X̄, Ȳ are respectively
replaced by E(X1), E(Y1) But it is easy to argue directly (whether (Xi, Yi) are bivariate-
normal or not, that

1

n

n∑
i=1

[I[Xi>X̄, Yi>Ȳ ] − I[Xi>E(X1), Yi>E(Y1)]] → 0 as n→ ∞

(c). However, when the joint distribution ofXi, Yi is not normal, then the formula in
(a) is no longer valid, so the estmator in (b) is consistent for sin(2πP (X1 > E(X1), Y1 >
E(Y1))).

(2). (#5.3.10) Example 5.3.6 showed that for bivariate-normal data, the sample
correlation coefficient ρ∗ is asymptotically normal with mean ρ and variance (1/n
times) (1 − ρ2)2. Since the trnasformation g(x) = (1/2) log((1 + x)/(1 − x)) has
g′(x) = (1/2)(1/(1 + x) + 1/(1− x)) = 1/(1− x2), the Delta Method shows that

√
n(g(ρ∗)− g(ρ))

D→ N (0, 1) as n→ ∞

(3). (#5.3.33) (a). Calculation of these MLEs is completely sttraightforward. (b).
Since µ̂i is the average of the normal observations in the i’th row of the matrix Xij and
s2i = (k− 1)−1]sumk

j=1(Xij − µ̂i)
2 is the sample variance of the i’th row, we know that

(k − 1)ŝ2i /σ
2 ∼ χ2

k−1. Since the s2i are iid across i, the Law of Large Numbers implies

σ̂2 =
k − 1

k
· 1
p

p∑
i=1

s2i →
k − 1

k
E(s21 =

k − 1

k
· σ2
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(c) So σ̂2 is inconsistent for σ2, but kσ̂2/(k − 1) is consistent.

(4). (#5.4.1) (a). Consider the function g(t) = EP (ψ(X1 − t))). It follows imme-
diately from the assumed properties of ψ that |g(t)| ≤M and g(t) is non-increasing as
a function of t. In addition, from the bounded convergence theorem we find that for a
sequence tn ↗ ∞,

g(tn) = EP (ψ(X1 − tn)) → EP (ψ(−∞)) = ψ(−∞) < 0

and similarly if tn ↗ t < ∞, also g(t−) = g(t), and based on decreasing sequences,
g(−∞) = ψ(∞) > 0 and g(t−) exists. That is, the function g is bounded nondecreasing
with limits from the left and right, and g(−∞) > 0 > g(∞). (Note that the existence
of limits from the left [respectively, from the right] does not imply that g(t−) = g(t)
[resp. that g(t+) = g(t)].) Therefore θ(P ) exists and can be any value in the interval
between sup{t : g(t) > 0} and inf{t : g(t) < 0.

(b). Now we are assuming θ(P ) is unique, i.e. that g(θ(P )−) ≥ 0 ≥ g(θ(P )+), and
for arbitrary ϵ > 0, g(θ(P )− ϵ) > 0 > g(θ(P ) + ϵ). The Weak Law of Large Numbers
says for δ = min(θ(P )− ϵ) > 0 > g(θ(P ) + ϵ)) > 0,

P
(
n−1

n∑
i=1

ψ(Xi − θ(P ) + ϵ) < −δ/2 or n−1

n∑
i=1

ψ(Xi − θ(P )− ϵ) > δ/2
)

→ 0

It follows from this that, even though θ̂n = θ(P̂ ) need not be unique, P (|θ̂n| ≥ ϵ) → 0
as n→ ∞. Since ϵ > 0 is arbitrariy small, this proves consistency.

(c). This part involves a Taylor’s series exercise using differentiability of g only at
the point θ = θ(P ):

g(θ + t/
√
n) ≡ E(ψ(X1 − θ − t/

√
n)) = g(θ)− t g′(θ)/

√
n+ o(1/

√
n) (∗)

From this, we conclude that the right- and left-hand limits at θ satisfy g(θ+) =
g(θ−) = 0, and therefore also g(θ) (which is sandwiched between these) is 0.

Now we use the hint:

P (
√
n (θ̂n − θ) < t) = P (n−1/2

n∑
i=1

(ψ(Xi − θn)− g(θn)) > −
√
ng(θn))

Since we saw above in (*) that
√
n g(θn) → −t g′(θ), the first normal-convergence

assumption in (c) implies

P (
√
n (θ̂n − θ) < t) → 1− Φ(tg′(θ)/τ(θ)) = Φ(−tg′(θ)/τ(θ))
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which is exactly the desired normal-convergence assertion.

(d). This part has a misprint. (A6) expressed the equality between E(−ψ′(X1 −
θ)) and −Cov(ψ(X1 − θ), ∂ log f(X1, θ)/∂θ). However, even with this change in the
covariance formula, we need an additional Dominated-Convergence assumption to make
the derivative of g at θ equal to E(−ψ′(Xi − θ)).

(A). Let X ∼ χ2
m = Gamma(m/2, 1/2) and Y ∼ χ2

n = Gamma(n/2, 1/2) be
independent. Then W = X/(X + Y ) ∼ Beta(m/2.n/2) takes values in (0, 1), and
R = (n/m)X/Y = (n/m)W/(1 −W ) ∼ Fm,n. Therefore with b(w) = nw/(m(1 − w))
and (b−1)′(r) = mn/(n+mr)2, the Fm,n density is given by

fR(r) =
Γ((m+ n)/2)

Γ(m/2) Γ(n/2)
(

mr

n+mr
)m/2−1 (

n

n+mr
)n/2−1 mn

(n+mr)2

For the tk density we note that, this random variable T is the square root of an
F1,k−1 density, symmetrized by a random ± sign. So by one more transformation, with
R ∼ F1,k−1, we find for all real t,

fT (t) =
1

2
f√R(t

2) =
1

2
· Γ(k/2)√

π · Γ((k − 1)/2)
(k − 1)(k−1)/2 (t2)−1/2 (k − 1 + t2)−k/2 (2t)

(B). In (a), let U be any orthogonal transformation with first column 1/
√
n, and

Z be a column vector of n iid N (0, 1) random variables, andW = U(Z+µ/
√
n). Then

W1 =
√
n · Z̄ + µ, and Wj for j ≥ 2 are N (0, 1) random variables independent of one

another and of W1 ∼ N (µ, 1), and
∑n

j=1 (Zj + µ/
√
n)2 = W 2

1 +
∑n

j=2W
2
j , as desired.

In (b), the idea is similar, but the first column of the orthogonal matrix U must
now be v/∥v∥. (The other columns are any other elements of an orthonormal basis
of the subspace of Rn orthogonal to v. Now W has all entries independent, with
W1 = vtrZ + ∥v∥ ∼ N (0, ∥v∥2), and the remaining Wj ∼ N (0, 1). So

∑n
j=1 (Zj +

vj)
2 = W 2

1 +
∑n

j=2 W
2
j is noncentral chi-squared with noncentrality parameter ∥v∥2.
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