STAT 701 HW3 Solutions, 3/13/23

(1). (#5.4.2) Assume (A0)–(A3) and (A4'). The hint in the problem is proved by upper-bounding via the triangle inequality

$$\sup_{|t-\theta_0| \le \epsilon_n} \left| \frac{1}{n} \sum_{i=1}^n \left(\frac{\partial \psi}{\partial \theta}(X_i, t) - \frac{\partial \psi}{\partial \theta}(X_i, \theta_0) \right) \right| \le \frac{1}{n} \sum_{i=1}^n \sup_{|t-\theta_0| \le \epsilon_n} \left| \frac{\partial \psi}{\partial \theta}(X_i, t) - \frac{\partial \psi}{\partial \theta}(X_i, \theta_0) \right|$$

and taking expectations, using the fact that the summands on the right-hand side are *iid*. By the Dominated Convergence Theorem, (A.4) then holds if and only if the expectation of the left-hand side of the displayed equation convergence to 0, and this is true by continuity of $\partial \psi(x, \cdot)/\partial \theta$ since the summands on the right-hand side converge with probability 1 to 0 as $\epsilon_n \to 0$: the RHS expectations go to 0 because the terms are dominated by $M(X_i, \theta_0)$ which have finite expectation.

(2). (#5.4.3) There would have been no harm in this exercise if $d\mu(x)$ were replaced by dx on the Euclidean observation-space where X_i take their values. As mentioned below (5.4.20) in the book, the statement in (5.4.30) is simply that

$$\int \frac{\partial}{\partial \theta} \left(\psi(x,\theta) \, p(x,\theta) \right) dx = 0 \quad \text{for all} \quad \theta$$

In the problem's Hint, the right-hand side of the displayed equation is identically 0 for all finite a, b by (5.4.31), which implies that

$$\int \int_{a}^{b} \frac{\partial}{\partial \theta} \left(\psi(x,\theta) \, p(x,\theta) \right) d\theta \, dx \equiv 0$$

The condition in (A.6') implies (because any bounded [a, b] can be covered by finitely many intervals $(\theta - \delta(\theta), \theta + \delta(\theta))$) that one can switch the order of integration in the last expression, by Fubini's Theorem. Therefore, for all finite a, b

$$\int_{a}^{b} \int \frac{\partial}{\partial \theta} \left(\psi(x,\theta) \, p(x,\theta) \right) dx \, d\theta \equiv 0$$

which implies buy the funcamental theorem of calculus (differentiate d/db) that the expression $\int \{\cdot\} dx$ in the last displayed equation is identically 0, and the book already mentioned that this is equivalent to true first line of (5.4.30).

(3). (#5.4.10) (a). $A_n = -n^{-1} \sum_{i=1}^n \frac{\partial^2}{\partial \theta^2} \log f(X_i, \theta_0)$ is consistent for $I(\theta_0)$ according to the Law of Large Numbers and (5.4.30). If you use (A.4), then $|A_n - \hat{I}| \cdot I_{[|\hat{\theta} - \theta_0|} \leq 1$

 ϵ_n] $\to 0$ in probability, and $P(|\hat{\theta} - \theta_0| > \epsilon) \to 0$ by (A.5) if $\epsilon \to 0$ slowly enough; if you use (A.4'), then $E|A_n - \hat{I}| \to 0$ by the Dominated Convergence Theorem.

(b). Since $\sqrt{n}(\hat{\theta} - \theta_0) \to \mathcal{N}(0, 1/I(\theta_0))$, it follows that $P(\sqrt{n}(\hat{\theta} - \theta_0) \leq \Phi^{-1}(1 - \alpha)/\sqrt{I(\theta_0)}) \to 1 - \alpha$ and for all $\epsilon > 0$, $P(|1/\sqrt{I(\theta_0)} - 1/\sqrt{I(\hat{\theta})}| \geq \epsilon) \to 0$. Then by Slutsky's Theorem and continuity of $\Phi(\cdot)$,

$$P(\sqrt{n}\,(\hat{\theta}-\theta_0) \le \Phi^{-1}(1-\alpha)/\sqrt{I(\hat{\theta})}) \to 1-\alpha \implies P(\theta_0 \ge \hat{\theta}-\Phi^{-1}(1-\alpha)/\sqrt{I(\hat{\theta})}) \to 1-\alpha$$

(4). (#5.4.14) (a). In this Inverse Gaussian problem, we must use the identity

$$\left(\frac{1}{2\pi x^3}\right)^{1/2} \int_0^\infty \exp\left(-\lambda \left[\frac{x}{2\mu^2} + \frac{1}{2x}\right]\right) dx \equiv \frac{1}{\lambda^{1/2}} e^{-\lambda/\mu} \qquad (*)$$

Inverse-Gaussian is a canonical exponential family in the parameter λ , with $T(x) = -x/(2\mu^2) - 1/(2x)$. So the family is MLR, decreasing in $\sum_{i=1}^{n} T(X_i)$, and the one-sided test for $\lambda = \lambda_0$ versus $\lambda < \lambda_0$ rejects for large values of $\sum_{i=1}^{n} [X_i/(2\mu^2) + 1/(2X_i)]$.

(c). In (*), differentiate with respect to λ once to learn that $E(T(X)) = -1/\mu - 1/(2\lambda)$ and $E(T^2(X)) = 3/(4\lambda^2) + 1/\mu^2 + 1/\mu\lambda$, so that $\operatorname{Var}(T(X)) = 1/(2\lambda^2)$. Then apply the Central Limit Theorem to find the asymptotic approximate upper $1 - \alpha$ quantile of $\sum_{i=1}^{n} [X_i/(2\mu^2) + 1/(2X_i)]$ as

$$n(1/\mu + 1/(2\lambda_0)) + \Phi^{-1}(1-\alpha)\sqrt{n/(2\lambda_0^2)}$$
(**)

(e). The Rao Score rejection and large-sample UMP Neyman-Pearson regions are the same in the case where θ is univariate and the density is a canonical exponential family. These tests reject when: $\sum_{i=1}^{n} [X_i/(2\mu^2) + 1/(2X_i)] > (**)$.

(d). The Wald test is based on the MLE, which in the inverse-Gaussian family is $\hat{\lambda} = (n/2) / \sum_{i=1}^{n} (-1/\mu - T(X_i))$. This test rejects for $\hat{\lambda}$ less than $\lambda_0 - \Phi^{-1}(1-\alpha) \sqrt{2\lambda_0^2 n}$, since $I(\lambda_0) = \operatorname{Var}(T(X)) = 1/(2\lambda_0^2)$.

(A). As stated several times in class, the MLE for μ is \bar{X} in the $\mathcal{N}(0,1)$ model and an MLE is the sample median $\tilde{\mu}^{med}$ in the double-exponential model. Evidently, $\sqrt{n} (\bar{X} - \mu)$ is asymptotically normal with mean 0 and variance $\operatorname{Var}(X_1)$, which is 1 in the normal model and 2 in the double-exponential. As covered in class in problem 5.4.1(e), $\sqrt{n} (\tilde{\mu}^{med} - \mu)$ is asymptotically normal with mean 0 and variance = $1/(4(f_X(\mu))^2)$ which is equal to 1 in the doubple-exponential model and $1/(4/2\pi) = \pi/2$ in the normal model. Thus the ARE of $\tilde{\mu}$ versus \bar{X} is $2/\pi$ in the normal model, and the ARE of \bar{X} versus $\tilde{\mu}$ is 1/2 in the double-exponential model. (B). We are testing for the rate-parameter λ in the Expon(λ) model, which is MLR for statistic \bar{V} , and the UMP test for $H_0 : \lambda \leq \lambda_0$ versus $H_1 : \lambda > \lambda_0$ rejects when $\bar{V} \leq c$. Similarly, the one-sided UMP test in the other direction rejects when $\bar{V} \geq c'$. In part (a), the use of exact quantiles for the Gamma(n, 1) random variable $n\lambda_0 \bar{V}$ under the hypothesis $\lambda = \lambda_0$ gives the injterval which is the intersection of the two acceptance regions

$$\lambda_0 \in (\text{Gamma}(n,1)^{-1}(\alpha/2), \text{Gamma}(n,1)^{-1}(1-\alpha/2))/(n\bar{V}) = (0.798, 1.221)/\bar{V}$$

In (b), the posterior for λ is Gamma $(n+2, n\bar{V}+0.1)$, so the credible interval is

$$\lambda_0 \in (\text{Gamma}(n+2,1)^{-1}(\alpha/2), \text{Gamma}(n+2,1)^{-1}(1-\alpha/2))/(n\bar{V}+0.1)$$

or $(0.827, 1.258)/(\bar{V} + 0.1/60)$. Finally, in part (c), with the MLE $\hat{\lambda} = 1/\bar{V}$, we have $\sqrt{n} (\hat{\lambda} - \lambda_0) \approx \mathcal{N}(0, \lambda_0^2)$, so the interval is based on $\sqrt{n} (\hat{\lambda}/\lambda_0 - 1) \in (-\Phi^{-1}(1-\alpha), \Phi^{-1}(1-\alpha))$, or $\lambda_0 \in (1 \pm z_{.05}/\sqrt{n})^{-1}/\bar{V} = (0.825, 1.270)/\bar{V}$.

Coverage for the interval in (a) is exactly 90% as is therefore most accurate; coverage would be exact if λ were randomly generated according to the indicated prior, but it should still be fairly close to exact even for fixed λ_0 . Coverage in part (c) is only approximate, and is likely the least accurate.