
STAT 701 HW3 Solutions, 3/13/23

(1). (#5.4.2) Assume (A0)–(A3) and (A4′). The hint in the problem is proved by
upper-boundng via the triangle inequality
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and taking expectations, using the fact that the summands on the right-hand side are
iid . By the Dominated Convergence Theorem, (A.4) then holds if and only if the
expectatino of the left-hand side of the displayed equation convergence to 0, and this is
true by continuity of ∂ψ(x, ·)/∂θ since the summands on the right-hand side converge
with probability 1 to 0 as ϵn → 0: the RHS expectations go to 0 because the terms are
dominated by M(Xi, θ0) which have finite expectation.

(2). (#5.4.3) There would have been no harm in this exercise if dµ(x) were replaced
by dx on the Euclidean observation-space where Xi take their values. As mentioned
below (5.4.20) in the book, the statement in (5.4.30) is simply that∫

∂

∂θ
(ψ(x, θ) p(x, θ)) dx = 0 for all θ

In the problem’s Hint, the right-hand side of the displayed equation is identically 0 for
all finite a, b by (5.4.31), which implies that∫ ∫ b
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The condition in (A.6′) implies (because any bounded [a, b] can be covered by finitely
many intervals (θ− δ(θ), θ+ δ(θ))) that one can switch the order of integration in the
last expression, by Fubini’s Theorem. Therefore, for all finite a, b∫ b
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which implies buy the funcamental theorem of calculus (differentiate d/db) that the
expression

∫
{·} dx in the last displayed equation is identically 0, and the book already

mentioned that this is equivalent to trhe first line of (5.4.30).
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log f(Xi, θ0) is consistent for I(θ0) accord-

ing to the Law of Large Numbers and (5.4.30). If you use (A.4), then |An− Î| ·I[|θ̂−θ0
| ≤
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ϵn] → 0 in probability, and P (|θ̂− θ0| > ϵ) → 0 by (A.5) if ϵ→ 0 slowly enough; if you
use (A.4’), then E|An − Î| → 0 by the Dominated Convergence Theorem.
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(4). (#5.4.14) (a). In this Inverse Gaussian problem, we must use the identity( 1
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Inverse-Gaussian is a canonical exponential family in the parameter λ, with T (x) =
−x/(2µ2)−1/(2x). So the family is MLR, decreasing in

∑n
i=1 T (Xi), and the one-sided

test for λ = λ0 versus λ < λ0 rejects for large values of
∑n

i=1 [Xi/(2µ
2) + 1/(2Xi)].

(c). In (*), differentiate with respect to λ once to learn that E(T (X)) = −1/µ −
1/(2λ) and E(T 2(X)) = 3/(4λ2) + 1/µ2 + 1/µλ, so that Var(T (X)) = 1/(2λ2). Then
apply the Central Limit Theorem to find the asymptotic approximate upper 1 − α
quantile of

∑n
i=1 [Xi/(2µ

2) + 1/(2Xi)] as

n(1/µ+ 1/(2λ0)) + Φ−1(1− α)
√
n/(2λ20) (∗∗)

(e). The Rao Score rejection and large-sample UMP Neyman-Pearson regions are
the same in the case where θ is univariate and the density is a canonical exponential
family. These tests reject when:

∑n
i=1 [Xi/(2µ

2) + 1/(2Xi)] > (**).

(d). The Wald test is based on the MLE, which in the inverse-Gaussian family is
λ̂ = (n/2) /

∑n
i=1(−1/µ− T (Xi)). This test rejects for λ̂ less than

λ0 − Φ−1(1− α)
√
2λ20 n, since I(λ0) = Var(T (X)) = 1/(2λ20).

(A). As stated several times in class, the MLE for µ is X̄ in the N (0, 1) model
and an MLE is the sample median µ̃med in the double-exponential model. Evidently,√
n (X̄ − µ) is asymptotically normal with mean 0 and variance Var(X1), which is 1

in the normal model and 2 in the double-exponential. As covered in class in prob-
lem 5.4.1(e),

√
n (µ̃med − µ) is asymptotically normal with mean 0 and variance =

1/(4(fX(µ))
2) which is equal to 1 in the doubple-exponential model and 1/(4/2π) = π/2

in the normal model. Thus the ARE of µ̃ versus X̄ is 2/π in the normal model, and
the ARE of X̄ versus µ̃ is 1/2 in the double-exponential model.
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(B). We are testing for the rate-parameter λ in the Expon(λ) model, which is
MLR for statistic V̄ , and the UMP test for H0 : λ ≤ λ0 versus H1 : λ > λ0 rejects
when V̄ ≤ c. Similarly, the one-sided UMP test in the other direction rejects when
V̄ ≥ c′. In part (a), the use of exact quantiles for the Gamma(n, 1) random variable
nλ0 V̄ under the hypothesis λ = λ0 gives the injterval which is the intersection of the
two acceptance regions

λ0 ∈ (Gamma(n, 1)−1(α/2), Gamma(n, 1)−1(1− α/2))/(nV̄ ) = (0.798, 1.221)/V̄

In (b), the posterior for λ is Gamma(n+ 2, nV̄ + 0.1), so the credible interval is

λ0 ∈ (Gamma(n+ 2, 1)−1(α/2), Gamma(n+ 2, 1)−1(1− α/2))/(nV̄ + 0.1)

or (0.827, 1.258)/(V̄ + 0.1/60). Finally, in part (c), with the MLE λ̂ = 1/V̄ , we have√
n (λ̂− λ0) ≈ N (0, λ20), so the interval is based on

√
n(λ̂/λ0 − 1) ∈

(−Φ−1(1− α), Φ−1(1− α)), or λ0 ∈ (1± z.05/
√
n)−1/V̄ = (0.825, 1.270)/V̄ .

Coverage for the interval in (a) is exactly 90% as is therefore most accurate; coverage
would be exact if λ were randomly generated according to the indicated prior, but it
should still be fairly close to exact even for fixed λ0. Coverage in part (c) is only
approximate, and is likely the least accurate.
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