
STAT 701 HW4 Solutions, 4/10/23

(#5.5.2) Here we are testing H0 : µ ∈ [0,∆] versus HA : µ > ∆.

(a). Pµ(
√
n (X̄ − ∆) ≥ t) = (1 − Φ(

√
n (∆ − µ) + t)), and at t =

√
n (X̄ − ∆)

we obtain the p-value (which is the sup of the rejection probabilities and occurs at
µ = δ) as p̂ = Φ(−

√
n (X̄ −∆). In any case, this p-value under the null at µ = ∆ is

Unif(0, 1) distributed because p-values always are when the test statistic is continuously
distributed.

(b)–(c). With π(·) = ϕ(·) the standard normal density, by sufficiency π(µ |X) =
π(µ | X̄) is proportional to exp(− ((1 + n)/2)(µ− X̄an)

2), where an ≡ n/(n+ 1), and
is therefore the N (anX̄, an/n) density. The posterior probability of H0 is

p̃ = Φ(
∆− an X̄√

an/n
) − Φ(

−an X̄√
an/n

)

So when µ = ∆, the random variable
√

n/an (anX̄ −∆) tends to standard normal and

an X̄/
√

an/n → ∞, so that p̃ is asymptotically Unif(0, 1) distributed, as desired.

(d). For µ > ∆, again the second term of p̃ is negligible, so that X̄ ≈ µ and p̃ is
asymptotic to Φ(

√
n(X̄ −∆) +OP (1/

√
n)), and the ratio p̃/p̂ tends to 1.

> f = function(Del,n) {

an = n/(n+1)

Xb = 1.645/sqrt(n)+Del

pnorm(-sqrt(n/an)*(an*Xb-Del)) - pnorm(-sqrt(n/an)*an*Xb) }

> array( round(outer(c(.1,.24),c(10,20,50,100), f), 4), c(2,4),

dimnames=list(c("Delt=0.1","Delt=0.2"),

c("n=10","n=20","n=50","n=100")))

n=10 n=20 n=50 n=100

Delt=0.1 0.0312 0.0361 0.0432 0.0476

Delt=0.2 0.0564 0.0562 0.0549 0.0533

(#6.1.1) (a). First, if n = r with η, σ2 unknown, then in the loglikelihood (6.1.11)
we can put ηi = ui and take positive σ2 → 0 to argue that the likelihood can be made
arbitrarily large, with no maximum. (b). When n ≥ r+1, it is easy to check that the
given (η̂1, . . . , η̂r, σ̂

2) is the unique calculus maximum of (6.1.11).

(#6.1.4) (a)–(b). In this problem, the data values Yi have covariance matrix Σ
such that Σij = cov(Yi, Yj) = σ2 if i = j = 1, = (1 + c2)σ2 if i = j > 1, = cσ2 if
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i = j ± 1, and = 0 otherwise. Let W = Σ−1. When the error distribution is Gaussian,
the Gaussian likelihood immediately implies the maximum likelihood estimate of θ is
the minimizer of the quadratic form (Y − 1)′ W (Y − 1), which is the Weighted Least
Squares (WLS) estimate 1′WY /1′W1 and is clearly linear in Y . However as explained
in a class-wide email, the coefficients aj given in the problem must have a misprint,
because they are not correct when n = 2 or 3. Some formula like that must hold
because the solution of the equation Σv = 1 can be seen to satisfy (for components
2 through n-1) an inhomogeneous difference equation with constant coeffcients. The
verification of that solution with aj proportional to vj) might have been tractable with
correctly given closed-form formula, but I did not expect you to find the closed-form
formula yourselves, and you did not need to in order to solve the remaining parts of
the problem.

(d)–(e). These problem parts can be shown directly through the Cauchy-Schwarz
inequality:

n2 = [1′ 1]2 = [(Σ1/21)′ (Σ−1/21)]2 ≤ ∥Σ1/21∥2 · ∥Σ−1/21∥2 = (1′ Σ1) · (1′ Σ−1 1)

Since the variance of the MLE is 1/(1′Σ−11) and the variance of Ȳ = n−21′ Σ1, the
result of this inequality is that the variance of Ȳ is at least as large as the variance
of the WLS. Moreover, according to the Cauchy-Schwarz inequality, the inequality is
strict unless Σ1/21 is proportional to Σ−1/21, which happens only if Σ1 is proportional
to 1, which happens only if c = 0.

(#6.1.14) Here we deal with the linear Gaussian regression model with p = r = 2
and nonrandom design matrix Z with first column 1. From the book’s treatment
of this topic, we know β̂ − β = (Z ′Z)−1Z ′ ϵ ∼ N (0, σ2) is independent of s2 =
(n/(n − 2)) σ̂2 = (n − 2)−1

∑n
i=1(Yi − Zβ̂)2. The estimate of β1 + β2z is (1, z)β̂, and

(1, z)(β̂ − β) ∼ N (0, (1, z)(Z ′Z)−1(1, z)′σ2).

(a). The confidence interval for β1+β2z is (1, z)β̂±{(1, z)(Z ′Z)−1(1, z)′}1/2s · tn−2,α/2.

(b). For a new observation Y0 ∼ N (β1 + β2z, (1, z)(Z
′Z)−1(1, z)′σ2) independent of

the original sample Y , the point-predictor is again (1, z)β̂, and the prediction interval
is (1, z)β̂ ± {1 + (1, z)(Z ′Z)−1(1, z)′}1/2s · tn−2,α/2.

(#6.2.9) In this problem (Yi − µ)/σ = ϵi are iid random variables with den-
sity f(·), and ρ(x) = − log(f(x)) a strictly convex twice differentiable function. The
log-likelihood for the parameters (µ, σ) is −n log(σ) −

∑n
i=1 ρ((Yi − µ)/σ). (a).

When σ = σ0 is known, then the derivative of the log-likelihood with respect to µ
is −σ−1

0

∑n
i=1 ρ

′((Yi − µ)/σ0), so the likelihood equation solving for the root µ = µ̂ in
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this equation is as given in the problem, and the solution is unique if it exists, because
this function is strictly increasing and continuous in µ. The solution exists by the
intermediate value theorem if ρ(−∞) < 0 < ρ(∞). Because f is assumed strictly posi-
tive and log-concave, this must be true. (For example, if ρ(infty) ≤ 0, then f ′(x) ≥ 0
everywhere and strictly increases and is not integrable.

(b). The likelihood in terms of θ1 = 1/σ for fixed known θo2 = µ/σ, differentiated with
respect to θ1, yields the function h(θ1) = n/θ1 −

∑n
i=1 that is strictly decreasing with

respect to θ1. Moreover, by the reasoning in (a) saying that ρ(−∞) < 0 < ρ(∞), it
follows that h(0+) = ∞ and h(∞) < 0. Therefore, by the Intermediate Value Theorem
there is a root θ̂1 solving h(θ1) = 0, and the strict decrease of h(·) implies that root is
unique.

(#6.2.10) We did the univariate version of part (a) of this problem a while ago
in class.

(a). If θ∗n = θ0 +OP (n
−1/2, then

1

n

n∑
i=1

JΨ(Xi, θ
∗ P−→ E(JΨ(X1, θ0)

and by the hint, [ 1
n

n∑
i=1

JΨ(Xi, θ
∗)
]−1 1

n
Ψ(Xi, θ

∗
n =

[
E(JΨ(X1, θ0) + oP (1)

]−1
n∑

i=1

Ψ(Xi, θ0 − (1 + oP (1)) (θ
∗
n − θ0)

which by the definition of θ̄n in the problem implies property (6.2.3).

(b). Under A0-A4, the uniform version of the uniform inverse function theorem applies
to the functions gn(θ) = n−1

∑n
i=1 Ψ(Xi, θ) and g(θ) = E(Ψ(X1, θ)). The conclusion

of the uniform inverse function is just what we want for the assertion of this problem
part. The tricky step of this problem part is to show or assume condition (i). I think
we may need an assumption stronger than (A4) to prove this rigorously. An example
of such as assumption is: E[ supθ∈Sϵ(θ0) ∥JΨ(X1, θ)∥] < ∞ for some sufficiently small
ϵ > 0.

(c). The point is that under the assumptions and hint, using (a), all Newton-Raphson
iterates to find the root of the estimation equation starting from θ∗n fall within the ϵ
ball found in (b).
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