
STAT 701 HW5 Solutions, 4/28/23

(#6.3.1). The Poisson(λi) structure results in the exponential family log-likelihood

log f(y, ϑ) = −
n∑

i=1

log yi! +
n∑

i=1

(
yi (ϑ1 + ϑ2zi) − eϑ1+ϑ2zi

)
with natural parameters ϑ1, ϑ2, sufficient statistics T1 =

∑n
i=1 Yi, T2 =

∑n
i=1 zi Yi, and

A(ϑ) =
∑n

i=1 exp(ϑ1 + ϑ2 zi). The condition z1 < · · · < zn implies the information

I(ϑ) = Ä(ϑ) =
n∑

i=1

eϑ1+ϑ2zi

(
1

zi

)⊗2

is nonsingular, so that the MLE ϑ̂ uniquely solves the generalized method of moment
equation

n∑
i=1

(
Yi − eϑ̂1+ϑ̂2zi

)(
1

zi

)
= 0 =⇒ eϑ1 = nȲ

/ n∑
i=1

eϑ̂2 zi (1)

At ϑ2 = 0, it is easy to check that V22 = (I(ϑ)−1)22 = n (eϑ1 (n − 1) s2z)
−1, which is

readily estimated in terms of ϑ̂ by substituting (1). Therefore the asymptotic form of the
Wald test of H : ϑ2 = 0 rejects when

|ϑ̂2| sz
(
(n− 1) Ȳ

/ n∑
i=1

eϑ̂2 zi
)1/2

≥ zα/2

Next, it is easy to see that the restricted ML estimator for ϑ1 under H is ϑ̂
(r)
1 = log Ȳ ,

so that the Rao score statistic becomes

∇ϑ2 log f(y, ϑ)
∣∣∣
ϑ̂(r)

=

n∑
i=1

Yi zi −
n∑

i=1

zi e
ϑ̂
(r)
1 =

n∑
i=1

zi (Yi − Ȳ )

and the asymptotic form of the score test rejects H when this statistic in absolute value
exceeds (Ȳ

∑n
i=1 z2i )

1/2 zα/2.

Finally, the (generalized) likelihood ratio test rejects when

2
[ n∑

i=1

Yi (ϑ̂1 + ϑ̂2 Zi) −
n∑

i=1

eϑ̂1+ϑ̂2zi −
n∑

i=1

Yi log Ȳ + n Ȳ
]
≥ χ2

1,α

which simplifies after a little algebra involving the substitution (1) to

ϑ̂2

n∑
i=1

Yi zi − n Ȳ log(
1

n

n∑
i=1

eϑ̂2 zi) ≥ 1

2
χ2
1,α

1



(# 6.3.5). Here the log-likelihood is a constant plus

− (1/2)

n∑
i=1

{
− (Xi − ϑ1)

2 − (Yi − ϑ2)
2
}

The special feature of this problem is the restriction to nonnegative ϑ1, ϑ2, so that the null-
hypothesis values ϑ1 = ϑ2 = 0 lie at one corner of the parameter space Θ, thus invalidating
the conditions of Wilks’ Theorem. The MLE’s must by definition lie in the parameter space,
so that ϑ̂1 = X̄+ ≡ max(X̄, 0), and similarly ϑ̂2 = Ȳ +. (a). The Generalized Likelihood
Ratio Test-statistic for the bivariate-normal data (Xi, Yi) with mean ϑ = (ϑ1, ϑ2) ∈ Θ = R2

+

and variance the 2× 2 identity matrix is then

G = 2 log λ(X,Y) =

n∑
i=1

{
− (Xi − X̄+)2 − (Yi − Ȳ +)2 + X2

i + Y 2
i )

}
which is also given by

n∑
i=1

{
(2X̄Xi − X̄2) I[X̄>0] + (2Ȳ Yi − Ȳ 2) I[Ȳ >0]

}
= nX̄2 I[X̄>0] + nȲ 2 I[Ȳ >0]

By symmetry of the standard-normal random variables
√
nX̄,

√
nȲ (under H0), the vari-

ables I[X̄>0] and X̄2 are independent, and similarly for Ȳ . Therefore, given each of the
four events (each of probability 1/4) defined by combinations (0, 0), (1, 0), (0, 1), (1, 1) of
(IX̄>0], IȲ >0]), the conditional distribution of the GLRT statistic G is 0, χ2

1, χ2
1, χ2

2, so

P (G ≤ t) = (1/4)Fχ2
2
(t) + (1/2)Fχ2

1
(t) + (1/4) ∀ t ≥ 0

(b). Now Θ = {(ϑ1, ϑ2) : 0 ≤ ϑ2 ≤ cϑ1} = {(ϑ1, v ϑ1) : 0 ≤ v ≤ c, ϑ1 ≥ 0}, and the
maximum of ϑ1X̄ + ϑ2Ȳ − (ϑ2

1 + ϑ2
2)/2 is found over this Θ. The resulting statistic is

LR = nX̄2 I[X̄>0, Ȳ≤0] + n
(X̄ + cȲ )2

1 + c2
I[Ȳ >0, X̄+cȲ >0, cX̄<Ȳ ] + n(X̄2 + Ȳ 2) I[cX̄>Ȳ >0]

The method in this problem part is to note that we are maximizing ϑ1 (X̄+vȲ )− 1
2 (1+v2)ϑ2

1,
which occurs at ϑ1 = (X̄+vȲ )+/(1+v2), ϑ2 = vϑ1 for fixed v, and leads to maximized value
((X̄+vȲ )+)2/(2(1+v2)), and this value is maximized over v ∈ [0, c] at v = I[Ȳ >0, X̄+cȲ >0] c.

In this problem part, the probability that LR = 0 is for example

P (Ȳ < 0, X̄ < 0) + P (Ȳ ≥ 0, X̄ + cȲ < 0) =
1

4
+ (

1

4
− 1

2π
arcsin(

c√
1 + c2

))
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However, the other probabilities, of (2π)−1 arcsin(c/
√
1 + c2) that LR is equal to the χ2

2

distributed variable n(X̄2 + Ȳ 2) or of 1/2 that LR is equal to one of the χ2
1 distributed

statistics nX̄2 or n(X̄ + cȲ )2/(1 + c2), do not in this problem part completely specify
the distribution of LR since, for example, the event that LR = nX̄2 is dependent on the
variable-value nX̄2.

(c) By simple re-scaling (since σ2
1,0, σ

2
2,0 are assumed known, there is no loss of generality

in assuming that the known variances are equal to 1. Then the transformation Zi = (ρ0Xi−
Yi)/

√
1− ρ2 makes the transformed data (Xi, Zi) into iid independent normally distributed

paris with means ϑ1 and ϑ∗
2 = E(Zi) satisfying ϑ1 ≥ 0, (ρ0/

√
1− ρ20)ϑ1 − ϑ∗

2 ≥ 0, and
the hypothesis H : ϑ1 = ϑ2 = 0 that we want to test is the same as the hypothesis that
ϑ1 = ϑ∗

2 = 0. Therefore, with c = ρ0/
√
1− ρ20, and with the former (Xi, Yi) pairs in (b)

replaced by (Xi, Zi), this problem part is identical to part (b).

(#6.3.8). In the slightly different notation adopted in class, with H0 : θ1 = · · · = θq = 0,

the problem is to show that
√
nΨn(θ̂0)

D−→ N (0,Σ(θ0)) under regularity conditions A0–A6,
with θ̂(1) = β̂ denoting the estimating equation estimator for the initial q coordinates that
we are testing for equality to 0 and θ̂0 denoting the vector θ̂(r) = (0, θ̂(2)) = (0, η̂(r)), and
Ψn(θ) = n−1∇β logL(θ). Then by the Taylor’s expansion given in the problem’s hint,

√
nΨn(θ̂(r)) = n−1/2∇β logL(θ0) + n−1∇β∇tr

η logL(θ∗)n1/2(η̂((r)− η0)

= n−1/2∇β logL(θ0) − Iβ,η(Iη,η)
−1 n−1/2∇η logL(θ0) + oP (1)

and since the score statistic n−1/2∇θ logL(θ0)
D−→ N (0, I(θ0)), we conclude

√
nΨn(θ̂(r)) ≈ (Iq×q | Iβ,η(Iη,η)−1)n−1/2∇θ logL(θ0)

D−→ N (0, Iβ,β − Iβ,η(Iη,η)
−1Itrβ,η)

as desired.

(#6.4.5). Problem 6.4.5 on HW5 refers to ”the result from Problem 6.2.4” but obviously
means Problem 6.4.4 because 6.4.4(c) is the one where the Hypergeometric(r,c,n) distribution
is derived as the conditional probability distribution of N11 given R1 = N11 +N12 = r, C1 =
N11 + N2,1 = c, where (N11, N12, N21N22) is distributed Multinomial(n, (θ11, θ12, θ21, θ22)),
where θ11/(θ11 + θ12) = θ21/(θ21 + θ22).

You probably already knew that fact about the hypergeometric from undergraduate prob-
ability, but in any case that is the only way that problem 6.4.4 is relevant.

Although problem 6.4.5 states this badly, the null hypothesis being tested is the indepen-
dence of R1mC1, which problem 6.4.4(b) tells us is equivalent to the relation θ11/(θ11+θ12) =
θ21/(θ21 + θ22).

Then in 6.4.5, “exact level alpha” means that the null hypothesis is rejected with proba-
bility less than or equal to α, but the actual significance level is (because of the discreteness
of the random variables) in general not exactly α.
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Soln. There is very little to do here. When the θ’s satisfy the H0 relation, the definition
of j(α) says that it is the smallest integer such that P (N11 ≥ j(α) |R1 = r1, C1 = c1) ≤ α),
and this inequality expresses that the significance level (without any approximation, or any
dependence on the exact values of θij subject to θ11/(θ11 + θ12) = θ21/(θ21 + θ22).

(#6.4.6). (a). The multinomial log-likelihood is
∑

i,j Nij log ϑij . Under the null
hypothesis H0 that ϑij = η1i η2j , the log-likelihood takes the decoupled form

a∑
i=1

Ni· log η1i +

b∑
j=1

N·j log η2j , Ri = Ni· ≡
b∑

j=1

Nij , Cj = N·j ≡
a∑

i=1

Nij

Maximizing separately over {η1i}i and {η2j}j respectively under the parameter constraints

that
∑a

i=1 η1i = 1 =
∑b

j=1 η2j , yields the MLE’s η̂1i = Ri/n, η̂2j = Cj/n.

(b). The LRT degrees of freedom are (ab− 1)− (a− 1 + b− 1) = (a− 1)(b− 1). Wilks’
theorem gives the asymptotic χ2

(a−1)(b−1) distribution under H0 for the LR statistic

LR = 2
[
−

∑
i

Ri log
Ri

n
−

∑
j

Cj log
Cj

n
+

∑
i,j

Nij log
Nij

n

]

= 2
∑
i,j

RiCj

n

{nNij

RiCj
log

(nNij

RiCj

)}
By expanding the summand g(x) = x log x (with g(1) = 0, g′(1) = g′′(1) = 1) at
x = nNij/(RiCj) around x = 1, this statistic becomes

= 2
∑
i,j

RiCj

n

{
0 +

(nNij

RiCj
− 1

)
+

1

2

(nNij

RiCj
− 1

)2
+ oP (1)

and apart from the negligible remainder, the last expression is identical to the Pearson χ2

test statistic for row-column independence.

Extra Problem (A). Unintentionally, I made parts (b), (c) of this problem exactly
repeat the corresponding problem parts of #6.3.1. The difference here is that the constant
regression predcitors zi from #6.3.1 are replaced here by random Xi with (Xi, Yi) iid , and
the Xi random variables themselves have distribution governed by unk nown parameter λ.
So here we can calculate the per-observation information matrix from the (mixed-type) one-
observation log-likelihood

I(a, b, λ) = −E
(
∇⊗2

a,b,λ

{
log λ−λX−ea+bX+(a+bX)Y

})
=

 m0(a, b) m1(a, b) 0
m1(a, b) m2(a, b) 0

0 0 λ−2
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where

m0(a, b) =
λ ea

λ− b
, m1(a, b) =

λ ea

(λ− b)2
, m2(a, b) =

2λ ea

(λ− b)3

But note that for the upper-left block entries of the information matrix to be finite, it is
necessary that b < λ. In any case, the 0’s in the off-diagonal positions in the third row
and column imply that (when b < λ), ML estimation of (a, b) leads to the same asymptotic
variances whether or not λ is known.
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