
STAT 701 HW6 Solutions, 5/11/23

(# 1). In this problem, the score and information involve the digamma and trigamma func-
tions,D(a0) = d log Γ(a0)/da = Γ′(a0)/Γ(a0) and trigamma function T (a0) = d2 log Γ(a0)/da

2).
At a0 = 2, digamma(2) = 0.4227843, trigamma(2) = 0.6449341. In this Problem, the
Neyman-Pearson test would be fully optimal if there were no nuisance parameter b. Since b
is unknown, it must be estimated. In part (c), you are asked to approximate (using the CLT)
the probability of rejection of your tests when a = 3 (but b is still unknown). The answer is
based on the asymptotic distributions under the alternative, which depend on α, b, n.

(a) ‘Locally optimal’ signals the Rao Score approach. The (one-sided, un-squared) score
statistic for fixed b is

n−1/2∇a logL(X, a, b)
∣∣∣
a=2

=
1√
n

n∑
i=1

logXi + n (log b− 0.4228)

and the restricted MLE b̂(r) = 2/X̄, so

Rn =
1√
n

n∑
i=1

logXi +
√
n {log(2/X̄) − 0.4228}

and the asymptotic variance is (I(θ)−1)aa = T (2) − 1/2 = 0.1449. Thus the one-sided test
rejects when

(0.1449n)−1/2
n∑

i=1

(log(2Xi/X̄)− 0.4228) > zα = Φ−1(1− α) (1)

(b). Since the likelihood ratio at a = 3 over a = 2 for each fixed b is (2b)n (X1 · · ·Xn),
the optimal Neyman-Pearson test statistic for any known b would be

∑n
i=1 logXi. But

the Neyman-Pearson Lemma does not quite apply here, and the ”locally optimal” rationale
is not immediately persuasive versus the alternative a = 3. No test we have studied is exactly
optimal here, but a reasonable test statistic would be the LRT, although the Wilks Theorem
does not apply to it because our alternative does not consist of all possible values for the
parameter a. Nevertheless the LRT statistic is

log
(
∏n

i=1 Xi)
2 (3/X̄)3n e−3n

(
∏n

i=1 Xi) (2/X̄)3n e−2n
= Const. +

n∑
i=1

log(Xi) − n log(X̄)

After centering under H0 and scaling by 1/
√
n, this statistic is exactly the same as the Rao

Score statistic. It is definitely a sensible statistic. Another choice, which is asymptotically
the same under the null hypothesis, is the Wald test based on the MLE â. This statistic â
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standardized using large-sample theory at a = 2 has mean 2 and asymptotic variance (that
turns out not to depend on b) obtained from the (per-observation) Information matrix as

(I(a, b))−1
11

∣∣∣
a=2, b=b̂(r)

=

(
T (a) −1/b
−1/b a/b2

)−1

11

∣∣∣
a=2, b̂(r)

= (T (2)− 1/2)−1 = 6.8997

So the Wald test rejects when
√

n/6.8997 (â − 2) > Φ−1(α).

(c). The asymptotic equivalence mentioned in (b) between Wald and Rao-Score does not
persist under distant alternatives. So it makes sense to approximate the power of each versus
HA : a = 3. We use n = 40, α = 0.05. The Rao-score statistic at a = 3 has mean and
variance not depending on b and found by numerical integration, respectively equal to

(40 · 0.1449)−1/2(40) · (0.0693) = 1.1514

and
(40 · 0.1449)−1(40) · (T (3)− 1/3) = 0.4250

So the approximate Normal(1.1514, 0.4250) probability of [1.96,∞) is
1−Φ((1.96−1.1514)/

√
0.4250) = 0.1074. The corresponding approximate mean and variance

for the Wald Test Statistic under HA : a = 3 are respectively

(40/6.8997)1/2 = 2.4078 and (T (3)− 1/3)−1/6.8997 = 2.3528

So the approximate power for the Wald test is

1 − Φ((1.96− 2.4078)/
√
2.3528) = 0.615

This calculation suggests that the Wald test is much more powerful for the distant alternative
HA : a = 3 in this example than the Rao-Score test.

(# 2). Denote the log-likelihoods for X1, . . . , Xm and for Xm+1, . . . , Xn respectively
as logLf,m(θ), logLg,n−m(θ), so that the overall log-likelihood logL(θ) is just the sum of
these separate log-likelihoods. Let the per-observation information for θ with density f as
If (θ) and with density g as Ig(θ). Then our large-sample MLE theory under the regularity
conditions in Bickel-Doksum chapter 6 assure us that there exists ϵ > 0 (not shrinking to 0
as m,n−m → ∞) such that with probability converging to 1 as n → ∞, both log-likelihoods
are strictly concave on Bϵ(θ) and with a unique maximum, and that

−1

m
∇⊗2

θ logLf,m(θ)
P
≈ If (θ) ,

−1

n−m
∇⊗2

θ logLg,n−m(θ)
P
≈ Ig(θ)

so that logL(·) is strictly concave on Bϵ(θ) and

−1

n
∇⊗2

θ logL(θ)
P
≈ λ If (θ) + (1− λ)Ig(θ) ≡ I(θ)
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Moreover,
√
m (θ(1) − θ)

P
≈ (If (θ))

−1m−1/2∇ logLf,m(θ)

and √
n−m (θ(2) − θ)

P
≈ (Ig(θ))

−1(n−m)−1/2∇ logLg,n−m(θ)

The standard Taylor Series expansion of 0 = ∇ logL(θ̂) around the base-point θ shows that

√
n (θ̂ − θ)

P
≈ [I(θ)]−1 n−1/2∇ logL(θ)

D−→ N (0, (I(θ))−1)

The existence and consistency of θ̂ can also be shown by checking that
√
n (θ̂ − (I(θ)−1λIf (θ) θ

(1) − (I(θ)−1(1− λ)Ig(θ) θ
(2))

P−→ 0

(#2.4.18). The problem requires a lot of careful algebra. But the most economical approach
is to use the conditional density (coming from prediction theory or projections)

L(Zi |Yi) = N (µ1 + β2γ (Yi − α), γσ2) , γ ≡ σ2
1

β2
2σ

2
1 + σ2

, α ≡ β1 + β2µ1

Then the complete-data log-likelihood has the form
∑n

i=1 [ log fYi(Yi) + log fZi|Yi
(Zi |Yi)]

= − n

2
log(2π σ2

1 σ
2) − 1− γ

2σ2

n∑
i=1

(Yi − α)2 − 1

2γ σ2

n∑
i=1

(Zi − µ1 − β2γ (Y i− α))2

Then the major E-step calculation based on an initial parameter θ∗ = (µ1∗, α1∗, β2∗, γ∗, σ
2
∗)

and final parameter θ is for i ≥ m+ 1 given by

Eθ∗ [(Zi − µ1 − β2γ (Yi − α))2 |Yi] = (µ1∗ + β2∗γ∗(Yi − α∗)− µ1 − β2γ (Yi − α))2 + σ2
∗ γ∗

Like all EM problems, this one is impossible if you do not carefully distinguish the ini-
tial parameters (used to calculate conditional expectations) from the M-step free-and-then-
maximized parameters. The M-step maximizes over θ in the expression

− n

2
log(

σ2γ

1− γ
) − 1− γ

2σ2

n∑
i=1

(Yi − α)2 − 1

2γσ2

{ m∑
i=1

(Zi − µ1 − β2γ(Yi − α))2

+

n∑
i=m+1

(µ1∗ + β2∗γ∗(Yi − α∗)− µ1 − β2γ (Yi − α))2 + (n−m)σ2
∗ γ∗

}
Maximization is still a bit laborious, but you can verify without too much trouble by substi-
tuting the expression for ∂/∂µ1 = 0 into ∂/∂α = 0, that α̂ = Ȳ and then

µ̂1 =
1

n

{ m∑
i=1

Zi + (µ1∗ − β2∗γ∗α∗)(n−m) + β2∗γ∗

n∑
i=m+1

Yi

}
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(# 4). (Chi-squared goodness of fit test problem.)

prob4dat = scan("hw6prob4.dat", sep=" ") # numeric vector, length 80

## first step is to find the discrete dataset based on given cut-points

cvec = c(0, 0.35, 0.5, 0.625, 0.8, Inf)

count4 = hist(prob4dat, breaks=cvec, plot=F)$count

> count4

[1] 18 10 14 22 16

## maximize Weibull logLik for these count data

negWeib = function(x, dat=count4, cuts=cvec) {

alph=x[1]; lam=x[2]

probs = diff(pweibull(cuts, alph, lam^(-1/alph)))

-sum(count4*log(probs)) }

tmp = nlm(negWeib, c(2.5,3))

tmp$estimate

[1] 2.387675 2.589567

> expec4 = 80*diff(pweibull(cvec, tmp$est[1], tmp$est[2]^(-1/tmp$est[1])))

> expec4

[1] 15.22838 15.99817 14.34189 16.93424 17.49733

sum((count4-expec4)^2/expec4)

[1] 4.405005 # df = 5-1-2 =2

1-pchisq(4.405,2)

[1] 0.1105265 ## so we would accept the null that the data are Weibull

(# 5). Here the ϵi are the unobserved variables, and the complete-data log-likelihood is

n log(λ(1− p)) + (n−
n∑

i=1

ϵi) log(2) +
n∑

i=1

ϵi log(pλ/(1− p)) − λ
n∑

i=1

(2− ϵi)Yi

The conditional expectation needed is E(ϵi |Yi) = p e−λYi/(pe−λYi + 2(1 − p)e−2λYi), and
the M-steps are straightforward.

Define ρ∗ = p∗/(p∗ + 2(1− p) exp(−λYi)). Then the M-step maximizes

n log(λ(1− p)) + nρ∗ log(p/(λ(1− p)))− nλȲ (2− ρ∗)

and max occurs at p = ρ∗, λ = (1− ρ∗)/(Ȳ (2− ρ∗)).
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