## STAT 701 HW6 Solutions, 5/11/23

(\# 1). In this problem, the score and information involve the digamma and trigamma functions, $D\left(a_{0}\right)=d \log \Gamma\left(a_{0}\right) / d a=\Gamma^{\prime}\left(a_{0}\right) / \Gamma\left(a_{0}\right)$ and trigamma function $\left.T\left(a_{0}\right)=d^{2} \log \Gamma\left(a_{0}\right) / d a^{2}\right)$. At $a_{0}=2$, digamma (2) $=0.4227843$, trigamma(2) $=0.6449341$. In this Problem, the Neyman-Pearson test would be fully optimal if there were no nuisance parameter $b$. Since $b$ is unknown, it must be estimated. In part (c), you are asked to approximate (using the CLT) the probability of rejection of your tests when $a=3$ (but $b$ is still unknown). The answer is based on the asymptotic distributions under the alternative, which depend on $\alpha, b, n$.
(a) 'Locally optimal' signals the Rao Score approach. The (one-sided, un-squared) score statistic for fixed $b$ is

$$
\left.n^{-1 / 2} \nabla_{a} \log L(\mathbf{X}, a, b)\right|_{a=2}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \log X_{i}+n(\log b-0.4228)
$$

and the restricted MLE $\hat{b}^{(r)}=2 / \bar{X}$, so

$$
R_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \log X_{i}+\sqrt{n}\{\log (2 / \bar{X})-0.4228\}
$$

and the asymptotic variance is $\left(I(\theta)^{-1}\right)_{a a}=T(2)-1 / 2=0.1449$. Thus the one-sided test rejects when

$$
\begin{equation*}
(0.1449 n)^{-1 / 2} \sum_{i=1}^{n}\left(\log \left(2 X_{i} / \bar{X}\right)-0.4228\right)>z_{\alpha}=\Phi^{-1}(1-\alpha) \tag{1}
\end{equation*}
$$

(b). Since the likelihood ratio at $a=3$ over $a=2$ for each fixed $b$ is $(2 b)^{n}\left(X_{1} \cdots X_{n}\right)$, the optimal Neyman-Pearson test statistic for any known b would be $\sum_{i=1}^{n} \log X_{i}$. But the Neyman-Pearson Lemma does not quite apply here, and the "locally optimal" rationale is not immediately persuasive versus the alternative $a=3$. No test we have studied is exactly optimal here, but a reasonable test statistic would be the LRT, although the Wilks Theorem does not apply to it because our alternative does not consist of all possible values for the parameter $a$. Nevertheless the LRT statistic is

$$
\log \frac{\left(\prod_{i=1}^{n} X_{i}\right)^{2}(3 / \bar{X})^{3 n} e^{-3 n}}{\left(\prod_{i=1}^{n} X_{i}\right)(2 / \bar{X})^{3 n} e^{-2 n}}=\text { Const. }+\sum_{i=1}^{n} \log \left(X_{i}\right)-n \log (\bar{X})
$$

After centering under $H_{0}$ and scaling by $1 / \sqrt{n}$, this statistic is exactly the same as the Rao Score statistic. It is definitely a sensible statistic. Another choice, which is asymptotically the same under the null hypothesis, is the Wald test based on the MLE $\hat{a}$. This statistic $\hat{a}$
standardized using large-sample theory at $a=2$ has mean 2 and asymptotic variance (that turns out not to depend on $b$ ) obtained from the (per-observation) Information matrix as

$$
\left.(I(a, b))_{11}^{-1}\right|_{a=2, b=\hat{b}(r)}=\left.\left(\begin{array}{cc}
T(a) & -1 / b \\
-1 / b & a / b^{2}
\end{array}\right)_{11}^{-1}\right|_{a=2, \hat{b}(r)}=(T(2)-1 / 2)^{-1}=6.8997
$$

So the Wald test rejects when $\sqrt{n / 6.8997}(\hat{a}-2)>\Phi^{-1}(\alpha)$.
(c). The asymptotic equivalence mentioned in (b) between Wald and Rao-Score does not persist under distant alternatives. So it makes sense to approximate the power of each versus $H_{A}: a=3$. We use $n=40, \alpha=0.05$. The Rao-score statistic at $a=3$ has mean and variance not depending on $b$ and found by numerical integration, respectively equal to

$$
(40 \cdot 0.1449)^{-1 / 2}(40) \cdot(0.0693)=1.1514
$$

and

$$
(40 \cdot 0.1449)^{-1}(40) \cdot(T(3)-1 / 3)=0.4250
$$

So the approximate $\operatorname{Normal}(1.1514,0.4250)$ probability of $[1.96, \infty)$ is
$1-\Phi((1.96-1.1514) / \sqrt{0.4250})=0.1074$. The corresponding approximate mean and variance for the Wald Test Statistic under $H_{A}: a=3$ are respectively

$$
(40 / 6.8997)^{1 / 2}=2.4078 \quad \text { and } \quad(T(3)-1 / 3)^{-1} / 6.8997=2.3528
$$

So the approximate power for the Wald test is

$$
1-\Phi((1.96-2.4078) / \sqrt{2.3528})=0.615
$$

This calculation suggests that the Wald test is much more powerful for the distant alternative $H_{A}: a=3$ in this example than the Rao-Score test.
(\# 2). Denote the log-likelihoods for $X_{1}, \ldots, X_{m}$ and for $X_{m+1}, \ldots, X_{n}$ respectively as $\log L_{f, m}(\theta), \log L_{g, n-m}(\theta)$, so that the overall $\log$-likelihood $\log L(\theta)$ is just the sum of these separate log-likelihoods. Let the per-observation information for $\theta$ with density $f$ as $I_{f}(\theta)$ and with density $g$ as $I_{g}(\theta)$. Then our large-sample MLE theory under the regularity conditions in Bickel-Doksum chapter 6 assure us that there exists $\epsilon>0$ (not shrinking to 0 as $m, n-m \rightarrow \infty)$ such that with probability converging to 1 as $n \rightarrow \infty$, both log-likelihoods are strictly concave on $B_{\epsilon}(\theta)$ and with a unique maximum, and that

$$
\frac{-1}{m} \nabla_{\theta}^{\otimes 2} \log L_{f, m}(\theta) \stackrel{P}{\approx} I_{f}(\theta), \quad \frac{-1}{n-m} \nabla_{\theta}^{\otimes 2} \log L_{g, n-m}(\theta) \stackrel{P}{\approx} I_{g}(\theta)
$$

so that $\log L(\cdot)$ is strictly concave on $B_{\epsilon}(\theta)$ and

$$
\frac{-1}{n} \nabla_{\theta}^{\otimes 2} \log L(\theta) \stackrel{P}{\approx} \lambda I_{f}(\theta)+(1-\lambda) I_{g}(\theta) \equiv I(\theta)
$$

Moreover,

$$
\sqrt{m}\left(\theta^{(1)}-\theta\right) \stackrel{P}{\approx}\left(I_{f}(\theta)\right)^{-1} m^{-1 / 2} \nabla \log L_{f, m}(\theta)
$$

and

$$
\sqrt{n-m}\left(\theta^{(2)}-\theta\right) \stackrel{P}{\approx}\left(I_{g}(\theta)\right)^{-1}(n-m)^{-1 / 2} \nabla \log L_{g, n-m}(\theta)
$$

The standard Taylor Series expansion of $0=\nabla \log L(\hat{\theta})$ around the base-point $\theta$ shows that

$$
\sqrt{n}(\hat{\theta}-\theta) \stackrel{P}{\approx}[I(\theta)]^{-1} n^{-1 / 2} \nabla \log L(\theta) \xrightarrow{\mathcal{D}} \mathcal{N}\left(\underline{0},(I(\theta))^{-1}\right)
$$

The existence and consistency of $\hat{\theta}$ can also be shown by checking that

$$
\sqrt{n}\left(\hat{\theta}-\left(I(\theta)^{-1} \lambda I_{f}(\theta) \theta^{(1)}-\left(I(\theta)^{-1}(1-\lambda) I_{g}(\theta) \theta^{(2)}\right) \xrightarrow{P} 0\right.\right.
$$

(\#2.4.18). The problem requires a lot of careful algebra. But the most economical approach is to use the conditional density (coming from prediction theory or projections)

$$
\mathcal{L}\left(Z_{i} \mid Y_{i}\right)=\mathcal{N}\left(\mu_{1}+\beta_{2} \gamma\left(Y_{i}-\alpha\right), \gamma \sigma^{2}\right), \quad \gamma \equiv \frac{\sigma_{1}^{2}}{\beta_{2}^{2} \sigma_{1}^{2}+\sigma^{2}}, \quad \alpha \equiv \beta_{1}+\beta_{2} \mu_{1}
$$

Then the complete-data log-likelihood has the form $\sum_{i=1}^{n}\left[\log f_{Y_{i}}\left(Y_{i}\right)+\log f_{Z_{i} \mid Y_{i}}\left(Z_{i} \mid Y_{i}\right)\right]$

$$
=-\frac{n}{2} \log \left(2 \pi \sigma_{1}^{2} \sigma^{2}\right)-\frac{1-\gamma}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\alpha\right)^{2}-\frac{1}{2 \gamma \sigma^{2}} \sum_{i=1}^{n}\left(Z_{i}-\mu_{1}-\beta_{2} \gamma(Y i-\alpha)\right)^{2}
$$

Then the major E-step calculation based on an initial parameter $\theta_{*}=\left(\mu_{1 *}, \alpha_{1 *}, \beta_{2 *}, \gamma_{*}, \sigma_{*}^{2}\right)$ and final parameter $\theta$ is for $i \geq m+1$ given by

$$
E_{\theta_{*}}\left[\left(Z_{i}-\mu_{1}-\beta_{2} \gamma\left(Y_{i}-\alpha\right)\right)^{2} \mid Y_{i}\right]=\left(\mu_{1 *}+\beta_{2 *} \gamma_{*}\left(Y_{i}-\alpha_{*}\right)-\mu_{1}-\beta_{2} \gamma\left(Y_{i}-\alpha\right)\right)^{2}+\sigma_{*}^{2} \gamma_{*}
$$

Like all EM problems, this one is impossible if you do not carefully distinguish the initial parameters (used to calculate conditional expectations) from the M-step free-and-thenmaximized parameters. The M-step maximizes over $\theta$ in the expression

$$
\begin{aligned}
- & \frac{n}{2} \log \left(\frac{\sigma^{2} \gamma}{1-\gamma}\right)-\frac{1-\gamma}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\alpha\right)^{2}-\frac{1}{2 \gamma \sigma^{2}}\left\{\sum_{i=1}^{m}\left(Z_{i}-\mu_{1}-\beta_{2} \gamma\left(Y_{i}-\alpha\right)\right)^{2}\right. \\
& \left.+\sum_{i=m+1}^{n}\left(\mu_{1 *}+\beta_{2 *} \gamma_{*}\left(Y_{i}-\alpha_{*}\right)-\mu_{1}-\beta_{2} \gamma\left(Y_{i}-\alpha\right)\right)^{2}+(n-m) \sigma_{*}^{2} \gamma_{*}\right\}
\end{aligned}
$$

Maximization is still a bit laborious, but you can verify without too much trouble by substituting the expression for $\partial / \partial \mu_{1}=0$ into $\partial / \partial \alpha=0$, that $\hat{\alpha}=\bar{Y}$ and then

$$
\hat{\mu}_{1}=\frac{1}{n}\left\{\sum_{i=1}^{m} Z_{i}+\left(\mu_{1 *}-\beta_{2 *} \gamma_{*} \alpha_{*}\right)(n-m)+\beta_{2 *} \gamma_{*} \sum_{i=m+1}^{n} Y_{i}\right\}
$$

(\# 4). (Chi-squared goodness of fit test problem.)
prob4dat = scan("hw6prob4.dat", sep=" ") \# numeric vector, length 80
\#\# first step is to find the discrete dataset based on given cut-points
$\mathrm{cvec}=\mathrm{c}(0,0.35,0.5,0.625,0.8$, Inf)
count4 = hist(prob4dat, breaks=cvec, plot=F)\$count
$>$ count4
[1] $181014 \quad 2216$
\#\# maximize Weibull logLik for these count data
negWeib $=$ function( $x$, dat=count4, cuts=cvec) \{
alph=x[1]; lam=x[2]
probs $=\operatorname{diff}\left(\right.$ pweibull (cuts, alph, $\left.\left.\operatorname{lam}^{\wedge}(-1 / a l p h)\right)\right)$
-sum(count4*log(probs)) \}
tmp $=n \operatorname{lm}$ (negWeib, $c(2.5,3)$ )
tmp\$estimate
[1] 2.3876752 .589567
> expec4 = 80*diff(pweibull(cvec, tmp\$est[1], tmp\$est[2]~(-1/tmp\$est[1])))
> expec4
[1] $15.22838 \quad 15.9981714 .3418916 .9342417 .49733$ sum ((count4-expec4)~2/expec4)
[1] 4.405005
$\begin{aligned} & \text { 1-pchisq }(4.405,2) \\ & \text { [1] } 0.1105265\end{aligned}$ \#\# so we would accept the null that the data are Weibull
(\#5). Here the $\epsilon_{i}$ are the unobserved variables, and the complete-data log-likelihood is

$$
n \log (\lambda(1-p))+\left(n-\sum_{i=1}^{n} \epsilon_{i}\right) \log (2)+\sum_{i=1}^{n} \epsilon_{i} \log (p \lambda /(1-p))-\lambda \sum_{i=1}^{n}\left(2-\epsilon_{i}\right) Y_{i}
$$

The conditional expectation needed is $E\left(\epsilon_{i} \mid Y_{i}\right)=p e^{-\lambda Y_{i}} /\left(p e^{-\lambda Y_{i}}+2(1-p) e^{-2 \lambda Y_{i}}\right)$, and the M-steps are straightforward.

Define $\rho_{*}=p_{*} /\left(p_{*}+2(1-p) \exp \left(-\lambda Y_{i}\right)\right)$. Then the M-step maximizes

$$
n \log (\lambda(1-p))+n \rho_{*} \log (p /(\lambda(1-p)))-n \lambda \bar{Y}\left(2-\rho_{*}\right)
$$

and max occurs at $p=\rho_{*}, \lambda=\left(1-\rho_{*}\right) /\left(\bar{Y}\left(2-\rho_{*}\right)\right)$.

