
STAT 818D Lecture 6

Bootstrap Theory for Mean-Statistics

Readings for this lecture are from Wassermann (2006) Ch.3

(Secs. 3.2, 3.5) and DasGupta (2008) Chapter 29, pp. 461-

468. A standard reference for this theory is the “Jackknife and

Bootstrap” book of Shao and Tu (1995, Springer).

Today’s topics:

• What we want to extract from Bootstrapped Data

• Bootstrap Consistency Limit Theorems for Tn = X̄n

• background concepts on (in-probability or a.s.) convergence

of random functions
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Comments on boot package functions

Bootstrap Confidence Interval simulations can be done with
functions boot.ci, (and maybe abc.ci) in R package boot

• for boot.ci, 1st argument is the output from bootstrapping
with package function boot, e.g.: boot(xvec, B, statistic)

• statistic is a user-supplied function of the form e.g.

statistic=function(xdat, indices) mean(xdat[indices])

• argument type in boot.ci tells the CI’s to compute, from
c("norm","basic", "stud", "perc", "bca"): default is "all"

• or directly use abc.ci as in abc.ci(data, stat2)

stat2=function(xdat, wght=rep(1/length(xdat),

length(xdat)) sum(xdat*wght)
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Applicable Features of Bootstrap Distributions

Recall that based on a data sample Xn and a statistic Tn(Xn) =

T (µn), we draw B iid bootstrap samples X
∗(b)
n and compute

Tn(X∗(b)n ) = T (µ∗(b)n ) for b = 1, . . . , B. We do this to learn:

• Mean, Variances: information about E(T (µn) − T (P0)) and

Var(T (µn)) from observed data (sampled means & variances)

on T (µ∗n)− T (µn) for bias correction and variance estimation

• F−1
T (Xn)−T (P0)(p) from F−1

T (µ∗n)−T (µn) |Xn
(p) for Confidence

Intervals

• Tail Probabilities P (T (µ∗n) ≥ τ) from P (T (µ∗n) ≥ τ |Xn)

for Hypothesis Test Statistics
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Conditional Bootstrap Distributions

Conditional probabilities for h(X∗(b)n ) for a single b can be

studied in two ways. One is as discrete random variables

conditioned on Xn arising from the set of n indices i1, . . . , in

sampled equiprobably with-replacement from {1, . . . , n}.

Thus if h(X∗(b)n ) ≡ h0(X∗(b)j1
, . . . , X

∗(b)
jk

) for a fixed k-tuple

(j1, . . . , jk), then

E(h(X∗(b)n ) |Xn) =
∑n
i1=1 · · ·

∑n
ik=1 n

−k h0(Xi1, . . . , Xik)

=
∫
· · ·

∫
h0(x) dµn(x1) · · · dµ(xk) (related to U-statistics)

The second approach is via averaging over b = 1, . . . , B for large

B, using the Law of Large Numbers (next slide).
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Conditional Bootstrap Distributions and the
Glivenko-Cantelli Law of Large Numbers

All the quantities on the previous slide relate to bootstrap conditional-
distribution values (denoted HBoot(t) )

FTn(µ∗n) |Xn
(t) = P (Tn(µ∗n) ≤ t |Xn) = limB→∞

1
B

∑B
b=1 I[Tn(µ∗(b)n )≤t]

The limit is in Probability or w.p.1, conditionally given Xn, for
fixed n. Restatement: w.p.1 for samples Xn, with respect to
P∗ of bootstrap draws (indices re-sampled)

lim
B0→∞

sup
B≥B0, t∈R

∣∣∣FT (µ∗n) |Xn
(t) −

1

B

B∑
b=1

I
[T (µ∗(b)n )≤t]

∣∣∣ P∗−→ 0

Use ‖ · ‖∞ norm or Kolmogorov-Smirnov metric on d.f.’s, along
with another useful metric, in proving bootstrap consistency .
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Metrics and Definition of Consistency

In nonparametric setting where we do Bootstrap, the distribution
Hn(t) of Tn(µn) is an ∞-dimensional ‘parameter’ of interest.

Restrict attention to real-valued T ; denote by ρ a metric on the
space of distribution functions. Two examples of interest are:

K(F,G) = ‖F−G‖∞ = supt |F (t)−G(t)| Kolmogorov-Smirnov

d2(F,G) = inf(X,Y ):X∼F, Y∼G
(
E|Y−X|2

)1/2
Mallows-Wasserstein

Definition. (29.2 in DasGupta) The random function HBoot(t) =
P∗(Tn(µ∗n) ≤ t) is a consistent estimator of Hn(t)= P (Tn(µn) ≤ t)
(respectively weakly or strongly) for metric ρ if
ρ(HBoot, Hn)→ 0 (resp., in Probability or w.p.1) as n→∞.
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Theorems on Consistency of Bootstrap

Assume Xi iid with E(X2
i ) < ∞. In our main Theorem on

consistency, the statistic is an average: but it is centered and
scaled so that Hn is asymptotically nondegenerate. Define

Tn(µn, P0) =
√
n
∫
x d(µn−P0)(x) =

√
n
(
X̄n−E(X1)) so that

Tn(µ∗n, µn) =
√
n
∫
x d(µ∗n − µn)(x) =

√
n
(
X̄∗n − X̄n))

Now HBoot(t) = P∗(Tn(µ∗n, µn) ≤ t), Hn(t) = P (Tn(µn, P0) ≤ t)

and supt |Hn(t)−Φ(t/σX)| → 0.

Theorem. HBoot is strongly consistent for Hn in both the K

and d2 metrics, i.e., w.p.1 with respect to {Xi}∞i=1,

K(HBoot, Hn) + d2(HBoot, Hn) → 0 as n→∞
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Extensions to Statistics beyond X̄n

The validity of Bootstrap consistency goes well beyond X̄n,

holding also for:

• Smooth functions of averages (also in multivariate setting):

(Wassermann, Thm. 3.19; DasGupta, Thm. 29.4)

• Sample quantiles (DasGupta Thm. 29.6)

• U-statistics (DasGupta Thm. 29.7)

• A fancier version of these results (beyond the scope of our

course) is Wassermann Thm. 3.21

Next time we sketch the proof of our Theorem, then move on

to rates of convergence and ‘higher-order accuracy’
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