
LogLinear Models and Poisson Regression, Stat 701, Spring 2025

We discussed in class on Monday, May 5, the formulation of multinomial-data para-
metric models in a log-linear parametric regression framework. The goal of this devel-
opment is to relate the maximization of multinomial likelihood to the Poisson-regression
(quasi-likelihood) estimating equation, also discussed in that class.

The data are based on categorical outcomes k = 1, . . . , K for independent individuals
indexed i = 1, . . . , n, and consist of predictors Xk ∈ Rd (the same for all individuals,
varying with outcome-category k = 1, . . . , K, with first component Xk,1 = 1 to enable an
intercept-term in the model) together with the outcome Zi ∈ {1, . . . , K}. The form of
the parametric model pk(β) = P (Zi = k) with β ∈ Rd, is: pk(β) = exp(X ′

kβ), where
the probability-vector property

∑K
k=1 pk(β) = 1 is enforced in terms of the intercept

parameter β1, through

1 =
K∑
k=1

pk(β) = eβ1

K∑
k=1

exp (
d∑

r=2

βr Xk,r) (1)

In this framework, we have a design matrix X that is K × d, with rows Xk and entries
Xk,r, and multinomial cell probabilities pk = exp((Xβ)k). We assume that X has full
rank. After substitution for eβ1 using (1), the same model is expressed in terms of a
K × (d − 1) design matrix X∗ = (Xk,r)1≤k≤K, 2≤r≤d and d − 1 dimensional parameter
β∗ = (β2, . . . , βd), as

p̃k(β
∗) ≡ pk(β) = eβ1 exp((X∗β∗)k) =

exp(β∗′ X∗
k)∑K

m=1 exp(β∗′ X∗
m)

(2)

where the d− 1-dimensional rows of X∗ regarded as column-vectors are denoted X∗
k .

We spent much of the May 5 class discussing a couple of examples of this framework.

Example 1. (Two-way table, predictors a function of tabular indices) In this and the
next Example, the multinomial index k with K = J ·L is understood to correspond 1-to-1
with the 2-way table index k ↔ (j, l) for j = 1, . . . , J, l = 1, . . . , L. An example of a
parametric model with d = 4, with 3 free coefficients, after accounting for the probability-
vector property through equation (1), is a model like that of Homework 6 problem #4,
with

Xk = (1, j, l, j · l) , k ↔ (j, l)
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Example 2. (Two-way table, general row-column independence) Example 1 exhibits row-
by-column independence p(j,l) = g(j)·h(l) if β4 = 0, but as mentioned in an earlier class, in
that setting there are only two parameters governing the probabilities pk = p(j,l), respec-
tively through row-sums p(j,+) and column-sums p(+,l) being governed by proportionality
relations

p(j,+) ≡
L∑
l=1

p(j,l) ∝ eβ2 j , p(+,l) ≡
J∑

j=1

p(j,l) ∝ eβ3 l

The general row-by-column independence can also be given a loglinear regression form of
dimension d = J +L− 1 in which the (J ·L)× (J +L− 1) design matrix X has entries
for k ↔ (j, l):

Xk,r =


1 if r = 1

I[r−1=j] if r = 2, . . . , J

I[r−J=l] if r = J + 1, . . . , L− 1

(3)

This design matrix achieves the result that for k ↔ (j, l), 1 ≤ j ≤ J, 1 ≤ l ≤ L,

pk(β) = p(j,l) = exp(
J+L−1∑
r=1

βr Xk,r) = eβ1 · eβj+1 I[j<J] · eβJ+l I[l<L]

which is evidently a product of a function of j by a function of l (which is the defining
feature of row-by-column independence), and

p(j,+) =
L∑
l=1

p(j,l) ∝ exp(βj+1 I[j<J ]) , p(+,l) =
J∑

j=1

p(j,l) ∝ exp(βJ+l I[l<L])

Remark. Allowing predictors or covariates that differ by individual in these models
is more difficult when K > 2, and we do not discuss that here. Such models are multi-
outcome logistic regression models. The loglinear case K = 2 with general individual-level
predictors is the logistic-regression model that we have already discussed.

Relation between Poisson-regression and Multinomial MLEs

Now we are considering a general loglinear multinomial model, with iid Zi’s and
P (Zi = k) = p̃k(β

∗) = pk(β) = exp(X ′
kβ) for k = 1, . . . , K. Letting Nk =

∑n
i=1 I[Zi=k],

it is these countsN = (N1, . . . , NK) that are jointly distributed Multinom(n, (p1, . . . , pK)),
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and that [in a general multinomial model, whether or not parameterized by a lower-
dimensional parameter β or β∗], are sufficient statistics for (p1, . . . , pK). In the multino-
mial model parameterized here by β∗ in equation (2), the count-statistics N are sufficient
for β∗, and the log-likelihood and likelihood equation determining MLEs for β∗ are

logL1(β
∗) =

K∑
k=1

Nk log p̃k(β
∗) ⇒ ∇β∗ logL1(β

∗) =
K∑
k=1

X∗
k {Nk − n p̃k(β

∗)} = 0 (4)

The last step is to establish the connection with the MLEs in a Poisson Regression
model. Suppose we treat the countsNk for k = 1, . . . , K as independent Poisson(exp(X ′

kγ)
variables, where γ ∈ Rd is a parameter just like β. The log-likelihood logL2 and likeli-
hood equation, obtained by setting ∇γ logL2 to 0, are respectively

logL2(γ) =
∑
k=1

{ − eX
′
kγ + Nk Xk} ⇒

K∑
k=1

Xk (Nk − eX
′
kγ̂) = 0 (5)

The first entry of the likelihood equation in (5) says that n =
∑K

k=1 Nk =
∑K

k=1 exp(X ′
k γ̂),

which shows that γ̂1 is uniquely determined from (γ̂2, . . . , γ̂d) from the formula

exp(γ̂1) = n/
K∑
k=1

exp (
d∑

r=2

Xk,r γ̂r) (6)

which is just like formula (1). Substituting for exp(γ̂1) in the likelihood equation in (5),
omitting the first entry of that d-dimensional vector equation, and denoting
γ∗ = (γ2, . . . , γd), yields

K∑
k=1

X∗
k

{
Nk − n exp(γ̂∗′ X∗

k)∑K
m=1 exp(γ̂∗′X∗

m)
= 0

}
(7)

This proves that γ̂∗ in (7) satisfies exactly the same likelihood equation as the MLE
of β∗ in (4). Therefore the MLEs are the same, and we can rely on Poisson regression
software to fit loglinear models.
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