LogLinear Models and Poisson Regression, Stat 701, Spring 2025

We discussed in class on Monday, May 5, the formulation of multinomial-data para-
metric models in a log-linear parametric regression framework. The goal of this devel-
opment is to relate the maximization of multinomial likelihood to the Poisson-regression
(quasi-likelihood) estimating equation, also discussed in that class.

The data are based on categorical outcomes k = 1,..., K for independent individuals
indexed ¢ = 1,...,n, and consist of predictors X; € R? (the same for all individuals,
varying with outcome-category k = 1,..., K, with first component X;; = 1 to enable an
intercept-term in the model) together with the outcome Z; € {1,..., K}. The form of
the parametric model py(3) = P(Z; = k) with 8 € R?, is: pi(8) = exp(X,5), where
the probability-vector property Zszl pr(B) = 1 is enforced in terms of the intercept
parameter [, through

L= p(B) =" Y exp() B Xr) (1)
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In this framework, we have a design matrix X that is K x d, with rows X} and entries
Xk, and multinomial cell probabilities p, = exp((X/S);). We assume that X has full
rank. After substitution for ¢’ using (1), the same model is expressed in terms of a
K x (d — 1) design matrix X* = (Xi,);<pcx 9<p<q and d — 1 dimensional parameter
B* = (B2,...,Ba), as

exp(8” X})
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where the d — 1-dimensional rows of X* regarded as column-vectors are denoted X;.

(2)

We spent much of the May 5 class discussing a couple of examples of this framework.

Example 1. (Two-way table, predictors a function of tabular indices) In this and the
next Example, the multinomial index £ with K = J- L is understood to correspond 1-to-1
with the 2-way table index k < (j,1) for j = 1,...,J, l = 1,..., L. An example of a
parametric model with d = 4, with 3 free coefficients, after accounting for the probability-
vector property through equation (1), is a model like that of Homework 6 problem #4,
with

Xi = (L]alajl) ) kH(]al)



Example 2. (Two-way table, general row-column independence) Example 1 exhibits row-
by-column independence p(; ;) = g(j)-h(l) if B4 = 0, but as mentioned in an earlier class, in
that setting there are only two parameters governing the probabilities p, = p(;), respec-
tively through row-sums p(; ;) and column-sums p(, ;) being governed by proportionality

relations
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The general row-by-column independence can also be given a loglinear regression form of
dimension d = J 4+ L — 1 in which the (J - L) x (J+ L — 1) design matrix X has entries
for k < (4,1):
1 if r=1
ka = I[rflzj] if r=2,...,J (3)
][T—J:” if T‘:J‘I'l,,L—]_

This design matrix achieves the result that for k < (j,0), 1 <j<J 1<I<L,

J+L—-1
m(B) = pupy = ep( 3 B Xiy) = P errlven . frailicy

which is evidently a product of a function of j by a function of [ (which is the defining
feature of row-by-column independence), and
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Remark. Allowing predictors or covariates that differ by individual in these models
is more difficult when K > 2, and we do not discuss that here. Such models are multi-
outcome logistic regression models. The loglinear case K = 2 with general individual-level
predictors is the logistic-regression model that we have already discussed.

Relation between Poisson-regression and Multinomial MLEs

Now we are considering a general loglinear multinomial model, with #d Z;’s and

P(Z; =k) = pp(B*) = pe(B) = exp(X;B) for k=1,... K. Letting N, = > | Ijz,—,
it is these counts N = (IVy, ..., Nk ) that are jointly distributed Multinom(n, (p1,...,px)),



and that [in a general multinomial model, whether or not parameterized by a lower-
dimensional parameter 3 or [*], are sufficient statistics for (py,...,px). In the multino-
mial model parameterized here by * in equation (2), the count-statistics /N are sufficient
for £*, and the log-likelihood and likelihood equation determining MLEs for 5* are

K K
log Li(87) = Y Nilog pi(8°) = Vg logLi(8%) =>  Xi{Ne — npr(8)} =0 (4)
k=1

The last step is to establish the connection with the MLEs in a Poisson Regression
model. Suppose we treat the counts Ny for k = 1, ..., K asindependent Poisson(exp(X})
variables, where ~ € R? is a parameter just like 3. The log-likelihood log L, and likeli-
hood equation, obtained by setting V,log L, to 0, are respectively

K
logLo(y) = > {—eM7 + Ny X} = Y Xp (N — e¥7) =0 (5)
k=1 k=1

The first entry of the likelihood equation in (5) says that n = S°r, N = S0, exp(X}4),
which shows that 44 is uniquely determined from (42, ...,44) from the formula

exp(11) = n/ Z exp ( Z Xier Ar) (6)

which is just like formula (1). Substituting for exp(9;) in the likelihood equation in (5),
omitting the first entry of that d-dimensional vector equation, and denoting
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This proves that 4* in (7) satisfies exactly the same likelihood equation as the MLE
of 8* in (4). Therefore the MLEs are the same, and we can rely on Poisson regression
software to fit loglinear models.



