
STAT 701 Lecture, February 12, 2025

The topics for this lecture are:

(1) Calculations for one-sided Likelihood Ratio Test

(2) View of LRT as generalization of Neyman-Pearson Lemma

(3) Consistency of MLE on finite Θ

(4) Generalization of MLE consistency to Compact Θ
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Example with One-sided LRT-based Hypothesis Test

Consider H0 : θ ≤ 2 versus HA : θ > 2 based on data

Xi ∼ f(x, θ) = θ x−θ−1 I[x≥1], where Θ = (0,∞).

LRT statistic Λ =
maxθ≤2 θn (X1···Xn)−θ−1

maxθ θn (X1···Xn)−θ−1 ≤ 1

Since logL(θ;X) = n log θ − (θ + 1)
∑n

i=1 logXi is strictly

concave, calculus max θ̂ = n/
∑n

i=1 logXi exists and is unique,

but if θ̂ > 2, then n/θ −
∑n

i=1 logXi is positive and decreasing

on [0,2], so max occurs at 2, and

Λ = I[θ̂≤2] + I[θ̂>2] · e
n (X1 · · ·Xn)

−3 (2/θ̂)n
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LRT as generalization of Neyman-Pearson Lemma

If Θ = {θ0, θ1}, then Λ = L(θ0;X) / max{L(θ0;X), L(θ1;X)}

Test rejects for small values of Λ, i.e., Λ ≤ λα < 1 which means

that L(θ1;X)/L(θ0;X) ≥ 1/λα
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Consistency of MLE on finite Θ

Suppose that the parameter space Θ = {θ0, θ1, . . . , θk} with

data (Xi, i = 1, . . . , n) sampled from density f(x, θ) on

x ∈ Rd for some θ ∈ Θ.

If θ = θ0, then for each j ≥ 1:

1

n
log {

n∏
i=1

f(Xi, θj)

f(Xi, θ0)
} −→ Eθ0[ log(f(X1, θj)/f(X1, θ0)]

≤ log {Eθ0(f(X1, θj)/f(X1, θ0))} = 0

Why is this true without assumptions on the densities ?
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Jensen’s Inequality ⇒ Information Inequality

The reason is that Zi = f(Xi, θj)/f(Xi, θ0) is a nonnegative

finite-valued random variable under Pθ0 with expectation

Eθ0(Zi) =
∫
{f(x,θ0)>0}

f(x, θj)

f(x, θ0)
f(x, θ0) dx ≤ 1

Also, for any (differentiable) concave function g(z) like log(z),

g(Z) ≤ g(EZ)+ g′(EZ) (Z−EZ) Taylor 2nd order,MVT form

So Eθ0(log(Zi)) ≤ log(Eθ0(Zi)) ≤ 0
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MLE Consistency, continued

1

n
log {

n∏
i=1

f(Xi, θj)

f(Xi, θ0)
}

Pθ0−→ negative number, possibly −∞

for all j = 1, . . . ,K, and with Pθ0 probability approaching 1

Ln(θ0, X) > max
j≥1

Ln(θj, X)

This depends on identifiability of θ.

Also, this shows for some c > 0, with probability approaching 1,

Ln(θ̂;X) ≥ ec n max
θ ̸=θ̂

Ln(θ;X)
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Generalization of MLE Consistency Argument

Suppose that Θ = C ⊂ Rd is a compact set and an iid dataset
Xi, i = 1, . . . , n follows a density f(x, θ0) for unknown θ0 ∈ Θ.

We already know that (when θ is identifiable ):
for each θ1 ∈ Θ\{θ0}, Eθ0{ log(f(X1, θ1)/f(X1, θ0))} < 0

We need to make this kind of inequality somewhat more
uniform over neighborhoods to get a more general consis-
tency result. Following argument is due to Abraham Wald.

Assume: (*) for all θ0, θ1 ∈ Θ with θ1 ̸= θ0, there exists an open
ball Br(θ1) = {θ : ∥θ − θ1∥ < r} such that

Eθ0( sup
θ∈Br(θ1)∩Θ

log f(X1, θ)) < Eθ0(log f(X1, θ0)
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Then it follows:

1

n

n∑
i=1

{ log f(Xi, θ0) − sup
θ∈Br(θ1)∩Θ

log f(Xi, θ))} −→ pos. number

But for every ϵ > 0, the compact set {θ ∈ Θ : ∥θ − θ0∥ ≥ ϵ} is
covered by finitely many such open balls Br(θ1).

So again only finitely many such convergence results as in the 1st
display line of this slide are needed to show that with probability
approaching 1 as n → ∞,

logL(θ0;X) > sup
θ∈Θ: ∥θ−θ0∥>ϵ

logL(θ;X)

This shows that for large n, with high probability any likelihood
maximizer lies within ϵ of θ0 although the likelihood maxi-
mizer may not be unique .



An example of the result with compact Θ is given (in Thm. 5.2.1)

by a direct verification that the MLE [the relative-frequency

estimator θ̂ for the multinomial category probability-vector

parameter θ = (p1, . . . , pK)] is uniformly consistent.


