## Sample Problems for Test 1

The following problems are, in topic and level of difficulty, like those which will be asked on the in-class test on Wednesday, March 20. The test will consist of four or five such problems, although eight are given here. (The 'extra' parts of the problems are mostly a little more difficult than the test problems will be.)

1. Suppose that $X_{1}, \ldots, X_{n}$ are iid r.v.'s with the density $(1 / \vartheta) I_{[0, \vartheta]}$ for some $\vartheta>0$. Find a most powerful test of significance level $\alpha$ for $H_{0}: \vartheta=1$ versus $H_{A}: \vartheta=2$. Is it unique ? Is there some set of alternatives larger than $\{2\}$ for which your test is automatically most powerful?
2. Show that the sufficient statistic $T$ for an exponential-family random sample of size $n$ is automatically monotone likelihood ratio if $w(\vartheta)$ is a strictly increasing function.
3. Suppose that $p_{1}(\mathbf{X})$ is the p-value for the UMP test of $\mathbf{H}_{0}: \mu \leq 0$ based on a sample of $n$ iid $\mathcal{N}(\mu, 1)$ observations, and that $p_{2}(\mathbf{Y})$ is the p-value for the Likelihood Ratio Test of the same hypothesis based upon an independent sample of $m$ iid $\mathcal{N}\left(\mu, \sigma^{2}\right)$ r.v.'s, where $\sigma$ is unknown. What is the probability density of $\min \left(p_{1}(\mathbf{X}), p_{2}(\mathbf{Y})\right)$ when $\mu=0$ for both the $\mathbf{X}$ and the $\mathbf{Y}$ samples ?
4. Let $X_{i}$ be a sample of discrete, categorical r.v.'s, $1 \leq 20$, with values A, B, C respectively occurring with probabilities $(4-\vartheta) / 6,(1-\vartheta) / 3$, and $\vartheta / 2$, and with observed frequencies $n_{A}=8, n_{B}=6, n_{C}=6$. Find the rejection region (in terms of $n_{A}, n_{B}, n_{C}$ ) for the most powerful test of size 0.05 of $H_{0}: \vartheta=0$ versus $H_{A}: \vartheta=1$ and find the $p$-value for the given data values. You should use the following probability distribution function values for $\operatorname{Binom}(20,2 / 3)$ :

$$
\begin{array}{rlrrrr}
x & = & 8 & 9 & 10 & 17 \\
B\left(x, 20, \frac{2}{3}\right) & = & .013 & .037 & .092 & .940
\end{array} .982
$$

Note: Be careful on this problem: unlike other examples we have worked with, there is a data region where the $H_{0}$ probability is 0 while the alternative $H_{A}$ probability is positive, and another region where the $H_{A}$ probability is 0 while the $H_{0}$ probability is positive !
5. Consider the data $X_{i}, i=1, \ldots, n$, with density of the form $f(x, \vartheta)=\vartheta x^{\vartheta-1}, \quad 0<x<1$, where $\vartheta>0$ is an unknown parameter. Find the form of the confidence set for $\vartheta$ obtained by inverting the family of Likelihood Ratio Tests for $H_{0}: \vartheta=\vartheta_{0}$. Justify if you can why this set is an interval.
6. Suppose that $\left(X_{i}, Y_{i}\right)$ are independent pairs of variables such that $X_{i} \sim \operatorname{Expon}(\lambda)$ and conditionally given $X_{i}, \quad Y_{i} \sim \mathcal{N}\left(\mu, 2 / X_{i}\right)$. Find a pivotal quantity $Q(\mathbf{X}, \mathbf{Y}, \mu)$ for the parameter $\mu$ which has distribution not depending on $\lambda$.
Extra: if you can, find such a pivotal quantity which is a function of the joint sufficient statistics for $(\lambda, \mu)$.
7. Suppose that a hypothesis test of $H_{0}: \vartheta=0$ is based upon single observation $X \sim \operatorname{Unif}[\vartheta, \vartheta+2], \quad \vartheta \in[0,1]$.
(a). Define and calculate the power function for the test which rejects $H_{0}$ whenever $\quad X \geq 3 / 2$.
(b) Find the minimum-(Bayes)-risk procedure for the loss-function

$$
L(\vartheta, a)=\left\{\begin{array}{lll}
0 & \text { if } \quad a=\operatorname{Rej}, \vartheta>0 \\
0 & \text { if } & a=A c c, \vartheta=0 \\
2 & \text { if } & a=A c c, \vartheta>0 \\
1 & \text { if } & a=R e j, \vartheta=0
\end{array}\right.
$$

with respect to the prior $\pi$ which assigns probability-mass $1 / 2$ to each of $\vartheta=0,1$.
8. Assume that the large data-sample $Y_{i}, 1 \leq i \leq n$, is distributed with density $2 \lambda x e^{-\lambda x^{2}}, x>0$, where $\lambda>0$ is an unknown parameter. Find the rejection region for a UMP test of $H_{0}: \lambda \leq 1$ with size approximately 0.95. You should specify the cutoff as well as the form of the rejection region. (Your answer may include some unevaluated Gamm-function values. but should otherwise be explicit.)

