Stat 701 Sample Problems for Test 2, Spring 2010

(I). (*Wald, Score and GLRT Tests*) A sample of observations X_1, \ldots, X_n from a Gamma (α, β) density

$$f(x, \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I_{[x>0]}$$

For all problem parts below, you may use the formula for the Fisher Information matrix (which we found in Problem (I) in HW4)

$$I(\alpha,\beta) = \begin{pmatrix} 1/\beta^2 & (.4228 - \ln\beta)/(\alpha\beta) \\ (.4228 - \ln\beta)/(\alpha\beta) & (.8237 - .8456\ln\beta + \ln^2\beta)/\alpha^2 \end{pmatrix}$$

You may express your answers in terms of I_{11}, I_{21}, I_{22} if you wish.

(a). Find the Rao Score test for H_0 : $\alpha = 1$ against the general (twosided) alternative, including the approximate large-sample cutoff for your test statistic to give a size .05 test.

(b). Although there is no closed-form MLE in this problem, there is an easily derived equation from the β score equation which expresses $\hat{\alpha}$ uniquely in closed form in terms of $\hat{\beta}$. Find this expression.

(c). Use the expression in part (a) to give the Generalized Likelihood Ratio Test of size .05 (with large-sample approximate cutoff) in terms of $\hat{\beta}$ for H_0 : $\alpha = 1$ versus the general alternative.

(II). (GMOM vs ML based estimators) A sample Z_1, \ldots, Z_n of $\mathcal{N}(\mu, \sigma^2)$ (with both parameters unknown) is observed, and it is desired to estimate a target parameter defined as the signal-to-noise ratio $\gamma = \mu/\sigma$ (which is the reciprocal of the more common cofficient of variation).

(a). Find the asymptotic variance of the substitution estimator for γ based on the Maximum Likelihood Estimators.

(b). Find the limiting distribution of the Generalized Method of Moments Estimator of γ based on $h(Z_i) = I_{[Z_i > 0]}$.

(III). (Univariate estimating equation) Suppose you observe a data sample W_1, \ldots, W_n from $\text{Expon}(\beta_0)$. Define an estimator $\tilde{\beta}$ as the solution to the estimating equation

$$\sum_{i=1}^{n} W_i \left(\beta W_i - 2\right) = 0$$

(a). Explain how you know that the estimator is consistent, and

(b). use what you know about estimating equations to find the asymptotic distribution of $\sqrt{n} (\tilde{\beta} - \beta_0)$.

(IV). (Power of Test, in large-sample approx.) (a). Find the approximate power versus $\vartheta = 1/3$ of the Most Powerful size 0.05 test of $H_0: \vartheta = 1/4$ versus $H_A: \vartheta > 1/4$ based on Multinomial $(n, (\vartheta^2, 2\vartheta(1-\vartheta), (1-\vartheta)^2)$ data (n_0, n_1, n_2) .

(b). Is your test in (a) UMP against $H_2: \vartheta \ge 1/2$?

(V). (Sample Size Calculation Find the approximate sample size needed to test H_0 : $\lambda \leq 1.0$ versus H_1 : $\lambda > 1.0$ at significance level $\alpha = 0.01$ and achieve power 0.90 at $\lambda = 1.5$, based on a Poisson(λ) data sample Y_1, \ldots, Y_n . (Note: $\Phi^{-1}(.995) = 2.576$.)