Stat 701 Sample Problems for Test 2, Spring 2010

(I). (Wald, Score and GLRT Tests) A sample of observations X_{1}, \ldots, X_{n} from a $\operatorname{Gamma}(\alpha, \beta)$ density

$$
f(x, \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} I_{[x>0]}
$$

For all problem parts below, you may use the formula for the Fisher Information matrix (which we found in Problem (I) in HW4)

$$
I(\alpha, \beta)=\left(\begin{array}{rr}
1 / \beta^{2} & (.4228-\ln \beta) /(\alpha \beta) \\
(.4228-\ln \beta) /(\alpha \beta) & \left(.8237-.8456 \ln \beta+\ln ^{2} \beta\right) / \alpha^{2}
\end{array}\right)
$$

You may express your answers in terms of I_{11}, I_{21}, I_{22} if you wish.
(a). Find the Rao Score test for $H_{0}: \alpha=1$ against the general (twosided) alternative, including the approximate large-sample cutoff for your test statistic to give a size .05 test.
(b). Although there is no closed-form MLE in this problem, there is an easily derived equation from the β score equation which expresses $\hat{\alpha}$ uniquely in closed form in terms of $\hat{\beta}$. Find this expression.
(c). Use the expression in part (a) to give the Generalized Likelihood Ratio Test of size . 05 (with large-sample approximate cutoff) in terms of $\hat{\beta}$ for $H_{0}: \alpha=1$ versus the general alternative.
(II). (GMOM vs ML based estimators) A sample Z_{1}, \ldots, Z_{n} of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ (with both parameters unknown) is observed, and it is desired to estimate a target parameter defined as the signal-to-noise ratio $\gamma=\mu / \sigma$ (which is the reciprocal of the more common cofficient of variation).
(a). Find the asymptotic variance of the substitution estimator for γ based on the Maximum Likelihood Estimators.
(b). Find the limiting distribution of the Generalized Method of Moments Estimator of γ based on $h\left(Z_{i}\right)=I_{\left[Z_{i}>0\right]}$.
(III). (Univariate estimating equation) Suppose you observe a data sample W_{1}, \ldots, W_{n} from $\operatorname{Expon}\left(\beta_{0}\right)$. Define an estimator $\tilde{\beta}$ as the solution to the estimating equation

$$
\sum_{i=1}^{n} W_{i}\left(\beta W_{i}-2\right)=0
$$

(a). Explain how you know that the estimator is consistent, and
(b). use what you know about estimating equations to find the asymptotic distribution of $\sqrt{n}\left(\tilde{\beta}-\beta_{0}\right)$.
(IV). (Power of Test, in large-sample approx.) (a). Find the approximate power versus $\vartheta=1 / 3$ of the Most Powerful size 0.05 test of $H_{0}: \vartheta=1 / 4$ versus $H_{A}: \vartheta>1 / 4$ based on $\operatorname{Multinomial}\left(n,\left(\vartheta^{2}, 2 \vartheta(1-\vartheta),(1-\vartheta)^{2}\right)\right.$ data $\left(n_{0}, n_{1}, n_{2}\right)$.
(b). Is your test in (a) UMP against $H_{2}: \vartheta \geq 1 / 2$?
(V). (Sample Size Calculation Find the approximate sample size needed to test $H_{0}: \lambda \leq 1.0$ versus $H_{1}: \lambda>1.0$ at significance level $\alpha=0.01$ and achieve power 0.90 at $\lambda=1.5$, based on a $\operatorname{Poisson}(\lambda)$ data sample $Y_{1}, \ldots, Y_{n} . \quad\left(\right.$ Note: $\Phi^{-1}(.995)=2.576$.)

