Sample Problems for Final

The following problems are, in topic and level of difficulty, like those which will be asked on the 2-hour in-class final on Monday, May 20. The test will consist of four or five such problems.
(1). Find the Likelihood Ratio Test statstic for testing $H_{0}: p_{1}+2 p_{2}=$ p_{3} against the general alternative, based on multinomial data $\left(n_{1}, n_{2}, n_{3}\right), n_{j}=$ $\sum_{i=1}^{n} I_{\left[X_{i}=j\right]}$, where X_{i} are iid discrete random variables with $P\left(X_{i}=j\right)=$ $p_{j}, j=1,2,3$.
(2). Find the most powerful hypothesis test with significance level α of $H_{0}: \vartheta=1 / 3$ versus $H_{1}: \vartheta=2 / 3$ (i.e., the general alternative for the parameter space $\Theta=\{1 / 3,2 / 3\}$) for a data-sample of n iid random variabl;es $X_{i} \sim f(x, \vartheta) \equiv\left(1+\vartheta x^{2}\right) /(1+\vartheta / 3) I_{[0 \leq x \leq 1]}$. Characterize the cutoff for the rejection region uniquely as a function of α, n, and approximate it for large n in terms of normal distribution quantiles.
(3) (a) Find the asymptotic variance of the MLE for estimating ϑ from a sample of n iid random variables $X_{i} \sim f(x, \vartheta)=0.5 \cdot(1+\vartheta x) I_{[|x| \leq 1]}$, where $|\vartheta|<1$, when the true value $\vartheta_{0}=1 / 2$.
(b) Compare it to the asymptotic variance of the method-of-moments estimator $\tilde{\vartheta}$ and obtain the ARE of that estimator (with respect to the MLE).
(c) How large must n be, approximately, for the Wald-type 90% Confidence Interval to have width 0.01 ? How large must n be to achieve the same width for a 90% Confidence Interval based on $\tilde{\vartheta}$?
(4) Explain briefly why each of the following is true or false. Assume in each case that $X_{i} \sim f(x, \vartheta)$ are $i i d$ for $1 \leq i \leq n$, and the density satisfies all of the usual regularity conditions needed for MLE theory.
(i) If there is a UMVUE ϑ_{n}^{*} for ϑ for each n, then ϑ_{n}^{*} has asymptotic variance the same as the MLE $\hat{\vartheta}$.
(ii) If $g(\vartheta)$ is a known strictly increasing differentiable function, and $\hat{\vartheta}$ is a locally consistent MLE for ϑ, then so is $g(\vartheta)$ for $g(\vartheta)$.
(iii) If ϑ is 2 -dimensional, then the asymptotic variance of $\hat{\vartheta}_{1}$ is always strictly less when ϑ_{2} is known than when it is not known.
(iv) For each n, a family (for all α) of (2 -sided) α-level confidence intervals for ϑ in a parametric statistical setting always corresponds to a family (over α, ϑ_{0}) of (two-sided) hypothesis tests for $H_{0}: \vartheta=\vartheta_{0}$ with significance levels α, and vice versa.
(5) Suppose that Y is a discrete random variable, which under respective hypotheses H_{0}, H_{1} have the probabilities tabulated below:

Outcome	1	2	3	4	5
H_{0}	prob	.25	.11	.07	.10
H_{1}	prob	.06	.30	.25	.2

(a) What is the rejection region for the most powerful test of size 0.20 of H_{0} versus H_{1} ?
(b) What is the power for the test in (a) against alternative H_{1} ?
(c) What is the p-value, based on the family of most-powerful tests of H_{0} versus H_{1}, if the random-experiment outcome is 2 ?

One or two more problems will be included on this sample over the next couple of days, one on Pivotal Quantities and one on some other topic which could be chosen from among Bayesian tests or intervals, or definitions and basic notions of simulation topics like Bootstrap.

Instruction Note: unless you are directed otherwise, you may express confidence intervals in terms of quantiles of specified distributions.
(6). Suppose that X_{1}, \ldots, X_{n} are iid with location-family density $g(x-\vartheta)$, where $g(x)=\frac{1}{2}(1+|x|)^{-2}$. (Note: this is not the Cauchy but a double-tailed Pareto density, which is much easier to integrate !)
(a). Show how to obtain a 99% Confidence Interval of the form $(-\infty, U]$ for ϑ and a two-sided 90% confidence interval, in both cases using a pivotal quantity.
(b). Give a pivotal quantity for μ in the location-scale case, where $X_{i} \sim g((x-\mu) / \sigma)$ with unknown σ. (Note: this is a problem where an
explicit MLE and Wald CI would be available for n large. So the main interest is is small-sample settings.)
(c). Explain how, by calculation or simulation, you could obtain the interval endpoints numerically for a small valkue of n, like 15 .
(7). A sample Y_{1}, \ldots, Y_{n} is drawn from a density $\operatorname{Expon}(\Lambda)$, where Λ is an unknown random parameter with prior density $\operatorname{Gamma}\left(\alpha_{0}, \beta_{0}\right)$, where both α_{0} and β_{0} are known.
(a) Find an interval in terms of the data \mathbf{Y}, which with (conditional, i.e. posterior) probability 0.95 contains the actual (random) value Λ.

