
Example of Full Conditionals for Gibbs Sampler

This example is used in HW Problem Set 17 due Wednesday, November
18, 2009. It is taken from Example 3, p. 172, of “Explaining the Gibbs
Sampler”, by G. Casella and E. George, American Statistician (1992) 46,
167-174.

Define the joint mixed-type density (continuous in Y and discrete in
(X,N) ) of random variables (X,Y,N) by:

f(x, y, n) = C

(
n

x

)
yx+α−1 (1 − y)n−x+β−1 e−λ λn

n!
(1)

where the constant C = Γ(α + β)/(Γ(α) Γ(β)) is defined by the relation

∞∑

n=0

n∑

x=0

∫ 1

0
f(x, y, n) dy = 1

While artificially constructed, this density could arise in the following way:
N = n is a Poisson(λ) distributed sample size, Y ∼ Beta(α, β) plays
the role of a probability parameter with beta prior distribution, and given
(N,Y ) = (n, y), the data X = x represents the number of successes in a
Bernoulli coin-toss experiment with n trials and success-probability y.

As indicated in the Casella and George paper (p.168), the conditional dis-
tribution of X given N obtained by integrating out y can be found explicitly,
for x = 0, 1, . . . , n, as:

fX |N(x|n) =
∫ 1

0
f(x, y|n) dy =

(
n

x

)
Γ(α + β)

Γ(α) Γ(β)
· Γ(x + α) Γ(n − x + β)

Γ(α + β + n)

which is called the ‘beta-binomial distribution.

Our exercise in HW 17 is to simulate an iid sequence X1, X2, . . . from
the marginal distribution of X, which can be written explicitly but not in
closed form:

P (X = x) = fX(x) =
∞∑

n=x

(
n

x

)
Γ(α + β)

Γ(α) Γ(β)
· Γ(x + α) Γ(n − x + β)

Γ(α + β + n)
e−λ λn

n!

Obviously (?!), for each choice of parameters (λ, α, β), one could sim-
ulate directly from this marginal probability mass function. How would you
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do it ? To simulate R iid Xr variates, you could first choose a number M so
large that

P ( max
1≤r≤R

Xr ≥ M) ≤ .001

based on some analytic estimate, and then calculate the probability masses
qx = fX(x), x = 0, 1, . . . , M and put them in a vector along with qM+1 ≡
1 −∑M

j=0 qj. Finally you could use the R function sample to generate iid
random integers from the set {0, 1, . . . , M + 1} with probabilities from
the probability vector q. But all this is a little cumbersome, especially if
you wanted a really large sample-size R and if you wanted the parameters
(λ, α, β) also to be generated from some distribution in terms of other hyper-
prior paramaters.

So it would be attractive to have some second method of generating vari-
ates Xr. Gibbs Sampling is a handy approach here, because, although the
marginal of X is cumbersome, the conditional distributions of X given Y,N ,
of Y given (X,N), and of N given (X,Y ) are all quite explicit and closed-
form:

fX |Y,N (x|y, n) = dbinom(x, n, y) (by definition)

fY |X,N(y|x, n) = dbeta(y, x + α, n − x + β) (by inspection)

and for n ≥ x,

fN |X,Y (n|x, y) =
f(x, y, n)

∑
m≥x f(x, y,m)

= (1−y)n−x λn

(n − x)!

/ ∞∑

m=x

(1−y)m−x λm

(m − x)!

The result of this last calculation is:

fN |X,Y (n|x, y) = I[n≥x] e
−(1−y)λ · ((1 − y)λ)n−x

(n − x)!

or equivalently,

fN−X |X,Y (k|x, y) = dpois(k, (1 − y)λ)

All of these conditional densities are really easy to simulate from in R !
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