Example of Full Conditionals for Gibbs Sampler

This example is used in HW Problem Set 17 due Wednesday, November 18, 2009. It is taken from Example 3, p. 172, of "*Explaining the Gibbs Sampler*", by G. Casella and E. George, **American Statistician** (1992) 46, 167-174.

Define the joint mixed-type density (continuous in Y and discrete in (X, N)) of random variables (X, Y, N) by:

$$f(x,y,n) = C\binom{n}{x} y^{x+\alpha-1} (1-y)^{n-x+\beta-1} e^{-\lambda} \frac{\lambda^n}{n!}$$
(1)

where the constant $C = \Gamma(\alpha + \beta) / (\Gamma(\alpha) \Gamma(\beta))$ is defined by the relation

$$\sum_{n=0}^{\infty} \sum_{x=0}^{n} \int_{0}^{1} f(x, y, n) \, dy = 1$$

While artificially constructed, this density could arise in the following way: N = n is a $Poisson(\lambda)$ distributed sample size, $Y \sim Beta(\alpha, \beta)$ plays the role of a probability parameter with beta prior distribution, and given (N, Y) = (n, y), the data X = x represents the number of successes in a Bernoulli coin-toss experiment with n trials and success-probability y.

As indicated in the Casella and George paper (p.168), the conditional distribution of X given N obtained by integrating out y can be found explicitly, for x = 0, 1, ..., n, as:

$$f_{X|N}(x|n) = \int_0^1 f(x,y|n) \, dy = \binom{n}{x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\,\Gamma(\beta)} \cdot \frac{\Gamma(x+\alpha)\,\Gamma(n-x+\beta)}{\Gamma(\alpha+\beta+n)}$$

which is called the 'beta-binomial distribution.

Our exercise in HW 17 is to simulate an *iid* sequence X_1, X_2, \ldots from the marginal distribution of X, which can be written explicitly but not in closed form:

$$P(X = x) = f_X(x) = \sum_{n=x}^{\infty} {n \choose x} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \cdot \frac{\Gamma(x + \alpha) \Gamma(n - x + \beta)}{\Gamma(\alpha + \beta + n)} e^{-\lambda} \frac{\lambda^n}{n!}$$

Obviously (?!), for each choice of parameters (λ, α, β) , one could simulate directly from this marginal probability mass function. How would you

do it ? To simulate R *iid* X_r variates, you could first choose a number M so large that

$$P(\max_{1 \le r \le R} X_r \ge M) \le .001$$

based on some analytic estimate, and then calculate the probability masses $q_x = f_X(x), x = 0, 1, \ldots, M$ and put them in a vector along with $q_{M+1} \equiv 1 - \sum_{j=0}^{M} q_j$. Finally you could use the R function sample to generate *iid* random integers from the set $\{0, 1, \ldots, M+1\}$ with probabilities from the probability vector **q**. But all this is a little cumbersome, especially if you wanted a really large sample-size R and if you wanted the parameters (λ, α, β) also to be generated from some distribution in terms of other hyperprior parameters.

So it would be attractive to have some second method of generating variates X_r . Gibbs Sampling is a handy approach here, because, although the marginal of X is cumbersome, the conditional distributions of X given Y, N, of Y given (X, N), and of N given (X, Y) are all quite explicit and closedform:

$$f_{X|Y,N}(x|y,n) = \text{dbinom}(x,n,y)$$
 (by definition)

 $f_{Y|X,N}(y|x,n) = dbeta(y, x + \alpha, n - x + \beta)$ (by inspection) and for $n \ge x$,

$$f_{N|X,Y}(n|x,y) = \frac{f(x,y,n)}{\sum_{m \ge x} f(x,y,m)} = (1-y)^{n-x} \frac{\lambda^n}{(n-x)!} / \sum_{m=x}^{\infty} (1-y)^{m-x} \frac{\lambda^m}{(m-x)!}$$

The result of this last calculation is:

$$f_{N|X,Y}(n|x,y) = I_{[n\geq x]} e^{-(1-y)\lambda} \cdot \frac{((1-y)\lambda)^{n-x}}{(n-x)!}$$

or equivalently,

$$f_{N-X\,|X,Y}(k|x,y)$$
 = dpois $(k,(1-y)\lambda)$

All of these conditional densities are really easy to simulate from in R !