Stat 710 HW1 Solutions

(2). The density of the t_n distributed random variable $X_n = Z_n/\sqrt{V_n}$ has density of the form $C_n (1 + x^2/n)^{-(n+1)/2}$, where $Z_n \sim \mathcal{N}(0, 1)$ and $V_n \sim Gamma(n/2, n/2)$ are independent. We know that the distributional convergence of X_n to $\mathcal{N}(0, 1)$ alone is not enough to ensure convergence of moments: we need some uniform integrability. Moreover, it is easily checked that the p^{th} moment of X_n does not even exist for $n \leq p$. However, that is no obstacle to the p^{th} moment convergence of X_n to $\mathcal{N}(0, 1)$, since such convergence relates only to the behavior of integrals for sufficiently large n for each fixed p, and does in fact hold. To check the sufficient condition

 $\{X_n^p: n \ge 2p+2\}$ is uniformly integrable

it is enough to note that $E|Z_n|^{p+1}$ and $E|V_n|^{-(p+1)/2}$ are uniformly bounded for values of $n \ge 2p+2$, and the latter can easily be checked using the integrals with respect to *Gamma* densities.

(6). This problem was done in class, two ways.

(10). If $X_n \longrightarrow 0$ in probability and $\{Y_n\}_{n\geq 1}$ is tight, then for all $\epsilon > 0$, M, n_0 can be found so large that for all $n \geq n_0$,

$$P(|X_n| \ge 1) \le \frac{\epsilon}{2}$$
, $P(|Y_n| \ge M - 1) \le \frac{\epsilon}{2} \implies P(|X_n + Y_n| \ge M) \le \epsilon$

which overall says that $X_n + Y_n = \mathcal{O}_P(1)$.

(12). (i) Take $R(h) = h^2$, and either $X_n \sim \text{Unif}[1,2]$ or $X_n = n, 1/n$ each with probability 1/2. In either case, $R(X_n)/X_n = X_n$ does not conerge in probability to 0.

(ii) Take R(h) = h/(1-h), or $h \log \frac{1}{1-h}$, and $X_n \sim \text{Unif}(1-1/n, 1)$. Then $R(X_n)/X_n$ actually converges to ∞ in probability as $n \to \infty$, in the sense that $1/X_n$ converges in probability to 0.

(16). If A is an orthogonal $n \times n$ matrix, and $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, I_n)$, then we know by Jacobian change of variable formulas that $A\mathbf{X} \sim \mathcal{N}(\mathbf{0}, I_n)$, and by linear algebra $\|\mathbf{X}\|^2 = \|A\mathbf{X}\|^2$. Therefore $A\mathbf{U} = A\mathbf{X}/\|\mathbf{X}\| = A\mathbf{X}/\|A\mathbf{X}\|$ has the same distribution as \mathbf{U} , supported on $\mathbf{S}^{n-1} = \{\mathbf{u} \in \mathbf{R}^n : \|\mathbf{u}\| = 1\}$. (17). By the Law of Large Numbers, $\|\mathbf{X}\|^2/n \longrightarrow 1$ in probability as $n \to \infty$, so that

$$\sqrt{n}(U_{n,1}, U_{n,2}) = \sqrt{n/\|\mathbf{X}\|}(X_1, X_2) = (X_1, X_2) + o_P(1)$$

(18). For $\delta > 0$ chosen arbitrarily small, choose a continuity point M of the limiting distribution of $\sqrt{n} |T_n - \theta|$ which is larger than the $1 - \delta$ quantile of that limiting distribution. Then by construction,

$$\limsup_{n} P(|T_n - \theta| \ge \delta) \le \limsup_{n} P(|T_n - \theta| \ge M/\sqrt{n}) \le \delta$$

(1). [Corrected Solution] To make the multivariate Central Limit Theorem apply, you need to express S^2 asymptotically equivalent to an empirical average (of a function of the *iid* variables X_i). In fact,

$$\sqrt{n} \left(S^2 - \sigma^2 \right) = \sqrt{n} \left(\frac{1}{n-1} \left[\sum_{i=1}^n X_i^2 - n\overline{X}^2 \right] - \sigma^2 \right)$$
$$= \frac{\sqrt{n}}{n-1} \left(\sum_{i=1}^n \left(X_i^2 - \mu^2 - \sigma^2 \right) - n \left((\overline{X} - \mu + \mu)^2 - \mu^2 \right) + \sigma^2 \right)$$
$$= \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(X_i^2 - \mu^2 - \sigma^2 - 2\mu (X_i - \mu) \right) + o_P(1)$$

from which we easily conclude that the CLT applies to $\sqrt{n} \left(\overline{X} - \mu, S^2 - \sigma^2\right)$ and that the two coordinate variables are asymptotically independent if their asymptotic covariance is 0, i.e., if (in terms of $EX_1^3 = \mu_3$)

$$E((X_1 - \mu)(X_1^2 - \mu^2 - \sigma^2 - 2\mu(X_1 - \mu))) = \mu_3 - \mu(\mu^2 + \sigma^2) - 2\mu\sigma^2 = 0$$

(7). Since for smooth monotone g, $n^{-1/2} \sum_{i=1}^{n} (g(X_i) - g(\theta)) \sim \mathcal{N}(0, \theta (g'(\theta))^2)$, we have variance stabilization if $g(\theta) = \sqrt{\theta}$, and the confidence interval becomes $\left(n^{-1} \sum_{i=1}^{n} \sqrt{X_i} \pm z_{\alpha/2}/(2\sqrt{n})\right)^2$.