Solutions for HW1, Stat 710, F07

\#5.12. The condition is: there exists a unique pth quantile x_{p}, i.e. a number such that $P\left(X_{1} \leq x_{p}\right)=p$ and for all $\delta>0$,

$$
P\left(X_{1} \leq x_{p}-\delta\right)<p, \quad P\left(X_{1} \geq x_{p}+\delta\right)<1-p
$$

The Lemma needed to prove consistency under this condition is Lemma 5.10 on p.47. (We cannot use Theorem 5.23 for this purpose because it has consistency as a hypothesis not a conclusion.)
\#5.14. It seems that by inspection, there is a naive estimating equation for (α, β) given by:

$$
\sum_{i=1}^{n}\left(1, X_{i}\right)^{\prime}\left(Y_{i}-\alpha-\beta X_{i}\right)=0
$$

However, the second equation does not actually have expectation 0 so we cannot use this as written!

To follow the method of Example 5.26, we can factor the conditional density of $\left(X_{i}, Y_{i}\right)$ given Z_{i} (treating the parameters as known) to find that $X_{i}+\beta\left(Y_{i}-\right.$ $\alpha) \sim \mathcal{N}\left(\left(1+\beta^{2}\right) Z_{i},\left(1+\beta^{2}\right) \sigma^{2}\right)$ is 'sufficient' for Z_{i}. As in Example 5.26, we factorize the conditional joint density, finding in this case $f_{Y \mid X+\beta(Y-\alpha)}$ is

$$
\mathcal{N}\left(\left(\alpha+\left(\beta /\left(1+\beta^{2}\right)\right)(X+\beta(Y-\alpha))\right), \sigma^{2} /\left(1+\beta^{2}\right)\right)
$$

Thus, we find the log-conditional-likelihood contribution for the i 'th observation (given the sufficient statistic value $X_{i}+\beta\left(Y_{i}-\alpha\right)$) equal to

$$
\begin{gathered}
-\frac{1}{2} \log \frac{2 \pi \sigma^{2}}{1+\beta^{2}}-\frac{1+\beta^{2}}{2 \sigma^{2}}\left(Y_{i}-\left(\alpha+\frac{\beta}{1+\beta^{2}}\left(X_{i}+\beta\left(Y_{i}-\alpha\right)\right)\right)\right)^{2} \\
=-\frac{1}{2} \log \frac{2 \pi \sigma^{2}}{1+\beta^{2}}-\frac{1}{2\left(1+\beta^{2}\right) \sigma^{2}}\left(Y_{i}-\alpha-\beta X_{i}\right)^{2}
\end{gathered}
$$

Finally, the inference will be based on the 'score' for this last conditional likelihood, obtained by differentiating the estimating equation only with respect to $\alpha, \beta)$ and multiplying through by $\left.\left(1+\beta^{2}\right)\right)$:

$$
\sum_{i=1}^{n}\binom{1}{X_{i}}\left(Y_{i}-\alpha-\beta X_{i}\right)+\frac{\beta}{1+\beta^{2}} \sum_{i=1}^{n}\binom{0}{1}\left(Y_{i}-\alpha-\beta X_{i}\right)^{2}+\binom{0}{n \beta}
$$

This displayed expression must according to the idea of Example 5.26 be biascorrected, i.e. the expectation calculated conditionally given $\left\{X_{i}+\beta\left(Y_{i}-\alpha\right)\right\}_{i}$ must be subtracted. Note that all terms should have conditional expectations taken in this way. (In the first version of this solution, I erroneously omitted the
expectation of the first displayed term.) Note that since $Y_{i}-\alpha-\beta X_{i}=f_{i}-\beta e_{i}$ and $X_{i}+\beta\left(Y_{i}-\alpha\right)=\left(1+\beta^{2}\right) Z_{i}+e_{i}+\beta f_{i}$ are uncorrelated, $Y_{i}-\alpha-\beta X_{i}=f_{i}-\beta e_{i}$ is indenpendent of $\left(Z_{i}, X_{i}+\beta\left(Y_{i}-\alpha\right)\right)$, and the expectation of the last display is

$$
\binom{0}{n \beta}+E\left(\sum_{i=1}^{n}\left(Y_{i}-\alpha-\beta X_{i}\right)\binom{1}{\left(X_{i}+\beta\left(Y_{i}-\alpha\right)\right) /\left(1+\beta^{2}\right)}\right)=\binom{0}{n \beta}
$$

Thus the conditionally bias-corrected estimating equation becomes

$$
\begin{equation*}
\sum_{i=1}^{n}\left(Y_{i}-\alpha-\beta X_{i}\right)\binom{1}{X_{i}+\beta\left(Y_{i}-\alpha\right)}=\binom{0}{0} \tag{*}
\end{equation*}
$$

Consistency and asymptotic normality (possibly degenerate) of the solution $(\hat{\alpha}, \hat{\beta})^{\prime}$ is immediate from the delta-method and CLT (or from Theorem 5.23) once we verify that the (expected) Jacobian of the left-hand side of $\left({ }^{*}\right)$ is nonsingular. This Jacobian is easily calculated to be

$$
n\left(\begin{array}{ll}
-1 & -\bar{X} \\
2 \beta(\alpha-\bar{Y})-\left(1-\beta^{2}\right) \bar{X} & \sum_{i=1}^{n}\left(\left(Y_{i}-\alpha\right)^{2}-X_{i}^{2}-2 \beta X_{i}\left(Y_{i}-\alpha\right)\right)
\end{array}\right)
$$

which after substitution of the obvious relation $\hat{\alpha}=\bar{Y}-\hat{\beta} \bar{X}$ becomes
$n\left(\begin{array}{ll}1 & \bar{X} \\ \left(1+\beta^{2}\right) \bar{X} & \left(1+\beta^{2}\right) \bar{X}^{2}+\frac{1}{n} \sum_{i=1}^{n}\left(\left(X_{i}-\bar{X}\right)^{2}-\left(Y_{i}-\bar{Y}\right)^{2}+2 \beta X_{i}\left(Y_{i}-\bar{Y}\right)\right)\end{array}\right)$
and which in turn is easily seen to be asymptotic for large n by the Law of Large Numbers to

$$
n\left(\begin{array}{ll}
1 & (E Z)^{2} \\
\left(1+\beta^{2}\right)(E Z)^{2} & \left(1+\beta^{2}\right) E\left(Z^{2}\right)
\end{array}\right)
$$

In case one or both moments of Z are infinite, we find that the order of precision of one or both of the estimators is actually better than $1 / \sqrt{n}$.
\# 5.18. Here

$$
p_{\vartheta}(x)=\frac{\vartheta^{x} e^{-\vartheta}}{x!} \quad, \quad i_{\vartheta}=\frac{x}{\vartheta}-1 \quad, \quad \ddot{l}_{\vartheta}=-\vartheta^{-2}
$$

and the assertion in question is that $-E \ddot{l}_{\vartheta}(X)=\vartheta^{-2}=E \dot{l}_{\vartheta}^{2}(X)$. To get this using general principles via Dominated Convergence (with respect to counting measure on the nonnegative integers), dominate $p_{\vartheta}(x)$ for $\vartheta \in(\vartheta-\delta, \vartheta+\delta)$ by $(\vartheta+\delta)^{x} e^{-\vartheta+\delta} / x$!, and switch orders of differentiation and infinite-summation because the differentiated series are dominated by an absolutely convergent one.
\# 5.25. Here $m_{\theta}(x)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\left(x_{\mu}\right)^{2} /\left(2 \sigma^{2}\right)$.
(i) Consider $E\left(\sup _{\theta \in K} m_{\theta}\left(X_{1}\right)=-\frac{1}{2} \log \left(2 \pi \sigma_{*}^{2}\right)\right.$ where $\sigma_{*}^{2}=\inf _{\theta \in K} \theta_{2}$.
(ii) Using a compactification means allowing $K^{*} \subset \mathbf{R} \times[0, \infty)$ compact with $m_{\theta}(x)$ at $\theta^{*}=(\mu, 0)$ given as limit of log-densities $\lim _{\theta \rightarrow \theta^{*}} m_{\theta}(x)$, but for $\mu \neq 0$ this limit is $-\infty$ for a.e. x, while $E \sup _{\theta \in K^{*}} m_{\theta\left(X_{1}\right)}=+\infty$.
(iii). Now the unit of data is $\left(X_{1}, X_{2}\right)$ and $m_{\theta}(X)$ is replaced by $m_{\theta}(\underline{X})=$ $m_{\theta}\left(X_{1}\right)+m_{\theta}\left(X_{2}\right)$. For a.e. value $X_{1} \neq X_{2}$, so if $K^{*} \subset \mathbf{R} \times[0, \infty)$ is allowed in the maximization and $\theta_{2}^{*}=0$, then $\lim _{\theta \rightarrow \theta^{*}} m_{\theta}(\underline{X})=-\infty$ and

$$
\sup _{\theta \in[0, \infty)} m_{\theta}(\underline{X})=\max _{\theta \in[0, \infty)}\left\{-\log \left(2 \pi \sigma^{2}\right)-\left(X_{1}-X_{2}\right)^{2} /\left(8 \sigma^{2}\right)\right\}
$$

occurs at $\sigma^{2}=\left(X_{1}-X_{2}\right)^{2} / 8$ and has finite expectation.

Extra Problem. As hinted in class, the result here is a Corollary of the Theorem 19.4 proved in class, that if for all $\epsilon>0$ there is a finite number of ϵ bracketing functions for a class \mathcal{F} of functions in L_{1}, then that class is GlivenkoCantelli, i.e. satisfies the uniform law of large numbers. In this problem, the bracketing functions are found:
(i) by surrounding each $\theta \in K \in \mathbf{R}$ by a small open ball U_{θ} such that

$$
E\left(\sup _{\theta^{\prime} \in U_{\theta}} m_{\theta^{\prime}}\left(X_{1}\right)-\inf _{\theta^{\prime} \in U_{\theta}} m_{\theta^{\prime}}\left(X_{1}\right)\right) \leq \epsilon
$$

(ii) by finding a finite cover of the compact parameter set K by balls $U_{\theta_{1}}, \ldots, U_{\theta_{k}}$; and
(iii) by bracketing all functions m_{θ} for $\theta \in K$ using only finite linear combinations of functions which are piecewise constant on the partition of K induced by (intersections of) the balls $U_{\theta_{j}}$, using coefficients which can be taken from a finite set with spacing depending on ϵ.

The result of this problem is taken up again in the book in essentially the same way in Example 19.8.

