
Solutions for HW1, Stat 710, F07

#5.12. The condition is: there exists a unique pth quantile xp, i.e. a number
such that P (X1 ≤ xp) = p and for all δ > 0,

P (X1 ≤ xp − δ) < p, P (X1 ≥ xp + δ) < 1− p

The Lemma needed to prove consistency under this condition is Lemma 5.10 on
p.47. (We cannot use Theorem 5.23 for this purpose because it has consistency
as a hypothesis not a conclusion.)

#5.14. It seems that by inspection, there is a naive estimating equation for
(α, β) given by:

n∑
i=1

(1, Xi)′ (Yi − α− βXi) = 0

However, the second equation does not actually have expectation 0 so we cannot
use this as written !

To follow the method of Example 5.26, we can factor the conditional density
of (Xi, Yi) given Zi (treating the parameters as known) to find that Xi +β(Yi−
α) ∼ N ((1 + β2)Zi, (1 + β2)σ2) is ‘sufficient’ for Zi. As in Example 5.26, we
factorize the conditional joint density, finding in this case fY |X+β(Y−α) is

N ((α + (β/(1 + β2))(X + β(Y − α))), σ2/(1 + β2))

Thus, we find the log-conditional-likelihood contribution for the i’th observation

(given the sufficient statistic value Xi + β(Yi − α)) equal to
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Finally, the inference will be based on the ‘score’ for this last conditional likeli-
hood, obtained by differentiating the estimating equation only with respect to
α, β) and multiplying through by (1 + β2)) :

n∑
i=1

(
1
Xi

)(Yi − α− βXi) +
β

1 + β2

n∑
i=1

(
0
1
) (Yi − α− βXi)2 + (

0
nβ

)

This displayed expression must according to the idea of Example 5.26 be bias-
corrected, i.e. the expectation calculated conditionally given {Xi +β(Yi−α)}i

must be subtracted. Note that all terms should have conditional expectations
taken in this way. (In the first version of this solution, I erroneously omitted the
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expectation of the first displayed term.) Note that since Yi−α−βXi = fi−βei

and Xi+β(Yi−α) = (1+β2)Zi+ei+βfi are uncorrelated, Yi−α−βXi = fi−βei

is indenpendent of (Zi, Xi + β(Yi − α)), and the expectation of the last display
is

(
0

nβ
) + E

( n∑
i=1

(Yi − α− βXi)
( 1

(Xi + β(Yi − α))/(1 + β2)

) )
= (

0
nβ

)

Thus the conditionally bias-corrected estimating equation becomes

n∑
i=1

(Yi − α− βXi)
( 1

Xi + β(Yi − α)

)
= (

0
0
) (∗)

Consistency and asymptotic normality (possibly degenerate) of the solution
(α̂, β̂)′ is immediate from the delta-method and CLT (or from Theorem 5.23)
once we verify that the (expected) Jacobian of the left-hand side of (*) is non-
singular. This Jacobian is easily calculated to be

n

(
−1 −X̄
2β(α− Ȳ )− (1− β2)X̄

∑n
i=1 ((Yi − α)2 −X2

i − 2βXi(Yi − α))

)
which after substitution of the obvious relation α̂ = Ȳ − β̂X̄ becomes

n

(
1 X̄
(1 + β2)X̄ (1 + β2)X̄2 + 1

n

∑n
i=1 ((Xi − X̄)2 − (Yi − Ȳ )2 + 2βXi(Yi − Ȳ ))

)
and which in turn is easily seen to be asymptotic for large n by the Law of
Large Numbers to

n

(
1 (EZ)2

(1 + β2) (EZ)2 (1 + β2) E(Z2)

)

In case one or both moments of Z are infinite, we find that the order of
precision of one or both of the estimators is actually better than 1/

√
n.

# 5.18. Here

pϑ(x) =
ϑxe−ϑ

x!
, l̇ϑ =

x

ϑ
− 1 , l̈ϑ = −ϑ−2

and the assertion in question is that −E l̈ϑ(X) = ϑ−2 = E l̇2ϑ(X). To get this
using general principles via Dominated Convergence (with respect to counting
measure on the nonnegative integers), dominate pϑ(x) for ϑ ∈ (ϑ− δ, ϑ + δ) by
(ϑ + δ)x e−ϑ+δ/x!, and switch orders of differentiation and infinite-summation
because the differentiated series are dominated by an absolutely convergent one.
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# 5.25. Here mθ(x) = − 1
2 log(2πσ2) − (xµ)2/(2σ2).

(i) Consider E(supθ∈K mθ(X1) = − 1
2 log(2πσ2

∗) where σ2
∗ = infθ∈K θ2.

(ii) Using a compactification means allowing K∗ ⊂ R× [0,∞) compact with
mθ(x) at θ∗ = (µ, 0) given as limit of log-densities limθ→θ∗ mθ(x), but for
µ 6= 0 this limit is −∞ for a.e. x , while E supθ∈K∗ mθ(X1) = +∞.

(iii). Now the unit of data is (X1, X2) and mθ(X) is replaced by mθ(X) =
mθ(X1)+mθ(X2) . For a.e. value X1 6= X2, so if K∗ ⊂ R× [0,∞) is allowed
in the maximization and θ∗2 = 0, then limθ→θ∗ mθ(X) = −∞ and

sup
θ∈[0,∞)

mθ(X) = max
θ∈[0,∞)

{
− log(2πσ2)− (X1 −X2)2/(8σ2)

}
occurs at σ2 = (X1 −X2)2/8 and has finite expectation.

Extra Problem. As hinted in class, the result here is a Corollary of the
Theorem 19.4 proved in class, that if for all ε > 0 there is a finite number of ε-
bracketing functions for a class F of functions in L1, then that class is Glivenko-
Cantelli, i.e. satisfies the uniform law of large numbers. In this problem, the
bracketing functions are found:

(i) by surrounding each θ ∈ K ∈ R by a small open ball Uθ such that

E
(

sup
θ′∈Uθ

mθ′(X1) − inf
θ′∈Uθ

mθ′(X1)
)
≤ ε

(ii) by finding a finite cover of the compact parameter set K by balls
Uθ1 , . . . , Uθk

; and
(iii) by bracketing all functions mθ for θ ∈ K using only finite linear combi-

nations of functions which are piecewise constant on the partition of K induced
by (intersections of) the balls Uθj , using coefficients which can be taken from
a finite set with spacing depending on ε.

The result of this problem is taken up again in the book in essentially
the same way in Example 19.8.
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