Solutions for HW1, Stat 710, FO7

#5.12. The condition is: there exists a unique pth quantile x,, i.e. a number
such that P(X; < x,) = p and for all § > 0,

P(Xi<z,—0)<p, PXi>zp+0)<l—p

The Lemma needed to prove consistency under this condition is Lemma 5.10 on
p.47. (We cannot use Theorem 5.23 for this purpose because it has consistency
as a hypothesis not a conclusion.)

#5.14. It seems that by inspection, there is a naive estimating equation for
(a, B) given by:

n

(LX) (Yi—a—pX;) =0

i=1
However, the second equation does not actually have expectation 0 so we cannot
use this as written !

To follow the method of Example 5.26, we can factor the conditional density
of (X;,Y;) given Z; (treating the parameters as known) to find that X; + 8(Y; —
a) ~ N((1+ 8% Z;, (1 + 32)o?) is ‘sufficient’ for Z;. As in Example 5.26, we
factorize the conditional joint density, finding in this case fy|xyg(y—a) 18

N((a+ B/ + )X +B(Y —a))),0?/(1+ %)
Thus, we find the log-conditional-likelihood contribution for the i’th observation

(given the sufficient statistic value X; + 8(Y; — a)) equal to
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Finally, the inference will be based on the ‘score’ for this last conditional likeli-
hood, obtained by differentiating the estimating equation only with respect to
a,3) and multiplying through by (1 + £?)) :
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This displayed expression must according to the idea of Example 5.26 be bias-
corrected, i.e. the expectation calculated conditionally given {X;+ 3(Y; —a)};
must be subtracted. Note that all terms should have conditional expectations
taken in this way. (In the first version of this solution, I erroneously omitted the



expectation of the first displayed term.) Note that since Y; —a—pX; = f; —fe;
and X;+6(Y;—a) = (1+32)Z;+e;+8f; are uncorrelated, Y;—a—BX; = f;—fe;
is indenpendent of (Z;, X; + 5(Y; — «)), and the expectation of the last display
is

(noﬁ) + E(Z(Yi—a—ﬂxi)( (X, 1 AV, _1a))/(1+ﬁ2) )) = (noﬁ)

=1

Thus the conditionally bias-corrected estimating equation becomes
 i-a-X) (g, oy ) = () (%)
— “ YN Xi+BYi—a) ) 0

Consistency and asymptotic normality (possibly degenerate) of the solution
(&, B) is immediate from the delta-method and CLT (or from Theorem 5.23)
once we verify that the (expected) Jacobian of the left-hand side of (*) is non-
singular. This Jacobian is easily calculated to be

i=1

(Bo-n-0-ms £ |
"\ 28(a-Y)-(1-0)X T ((Yi—a)® - X? - 26X,(Y; — )

which after substitution of the obvious relation & =Y — 83X becomes

1 X
! ( 1+8)X (1+A)X2+ 5 T (X = X)? = (Vi = V)? + 28X5(Y; - V) )

and which in turn is easily seen to be asymptotic for large n by the Law of
Large Numbers to

<1 (EZ)? )
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In case one or both moments of Z are infinite, we find that the order of
precision of one or both of the estimators is actually better than 1//n.

# 5.18. Here
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and the assertion in question is that — Ely(X) = 9~2 = E3(X). To get this
using general principles via Dominated Convergence (with respect to counting
measure on the nonnegative integers), dominate py(z) for ¥ € (9 — §,9 + 0) by
(9 + 6)* e~V*9 /2!, and switch orders of differentiation and infinite-summation
because the differentiated series are dominated by an absolutely convergent one.



# 5.25. Here my(z) = —1 log(2mo?) — (z,)%/(207).
(i) Consider E(supger mo(X1) = —3 log(2mo2) where o2 = infyex 6o.
(ii) Using a compactification means allowing K* C R x [0, 00) compact with
mg(x) at 6* = (u,0) given as limit of log-densities limg_,g« mg(x), but for
p# 0 this limit is —oo for a.e. x, while Esupyep. mgx,) = +oc.

(iii). Now the unit of data is (X1, X2) and mg(X) is replaced by my(X) =
mg(X1)+mp(X2) . Fora.e. value X3 # Xo, soif K* C Rx[0,00) is allowed
in the maximization and 65 =0, then limy_ g« my(X) = —co and

sup mg(X) = max { ~log(2m0?) — (X1 — X3)?/(30%) }
0€[0,00) 0€[0,00)

occurs at 02 = (X; — X3)?/8 and has finite expectation.

Extra Problem. As hinted in class, the result here is a Corollary of the
Theorem 19.4 proved in class, that if for all € > 0 there is a finite number of e-
bracketing functions for a class F of functions in Ly, then that class is Glivenko-
Cantelli, i.e. satisfies the uniform law of large numbers. In this problem, the
bracketing functions are found:

(i) by surrounding each # € K € R by a small open ball Uy such that

E( sup mg(X;) — inf ’mg/(Xl)) <e
0'cUg 0"€Us

(ii) by finding a finite cover of the compact parameter set K by balls
Ug,, ..., Up,; and

(iii) by bracketing all functions my for § € K using only finite linear combi-
nations of functions which are piecewise constant on the partition of K induced
by (intersections of) the balls Up,, using coefficients which can be taken from
a finite set with spacing depending on e.

The result of this problem is taken up again in the book in essentially
the same way in Example 19.8.



