
Stat 710 HW2 Solutions

# 1 in-class. We are considering iid N (µ, σ2) r.v.’s Xi, and ϑ =
(µ, σ), with generalized method of moments estimators defined in terms of

e(ϑ) = Eϑ

(

(I[X1≤−1], I[X1≤1])
)

= (Φ(−(1 + µ)/σ),Φ((1 − µ)/σ)). These

moment estimators (µ̃, σ̃) are uniquely determined from the equations

−2µ̃
σ̃

= Φ−1(
1

n

n
∑

i=1

I[Xi≤1]) + Φ
−1(
1

n

n
∑

i=1

I[Xi≤−1])

2

σ̃
= Φ−1(

1

n

n
∑

i=1

I[Xi≤1]) − Φ−1(
1

n

n
∑

i=1

I[Xi≤−1])

The Jacobian derivative matrix Je is given by





−1
σ
φ((1 + µ)/σ) 1+µ

σ2 φ((1 + µ)/σ)

−1
σ
φ((1− µ)/σ) µ−1

σ2 φ((1− µ)/σ)





We learn from Theorem 4.1 that these generalized moment estimators are
asymptotically normal with mean ϑ and asymptotic variance (without factor
1/n) given at µ0 = 0, σ0 = 1 by

J−1
e
E

(

I[X1≤−1] I[X1≤−1]

I[X1≤−1] I[X1≤1]

)

J−1 tr
e

=
1

φ2(1)

(

−1 1
−1 −1

)−1 (

Φ(−1) Φ(−1)
Φ(−1) Φ(1)

) (

−1 −1
1 −1

)−1

=
1

4φ2(1)

(

Φ(1) + 3Φ(−1) Φ(1)− Φ(−1)
Φ(1)− Φ(−1) Φ(1)− Φ(−1)

)

and Avar(µ̃) = (3Φ(−1)+Φ(1))/(4φ2(1)) = 5.62 versus the corresponding
value of 1 for Avar(X).

# 1, p.40. Here EX2
i = ϑ2 1

2

∫ 1
−1 x

2 dx = ϑ2/3, wich implies

the moment-based estimator is ϑ̃ = g(X2) =
(

3
n

∑n
i=1 X

2
i

)1/2
. Then

g′(g−1(ϑ)) =
√

3
2
(ϑ2/3)−1/2 = 3/(2ϑ), while

√
n (n−1∑n

i=1 X
2
i − ϑ2/3) →D

N (0, 4ϑ4/45). This implies
√
n (ϑ̃− ϑ) ∼ N (0, ϑ2/5).
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# 6. Following the hint: suppose ϑ1, ϑ2 are distinct zero-points for e on
the convex set Θ, and g(λ) = (ϑ1− vt2)tr e(λϑ1+(1−λ)ϑ2) for λ ∈ [0, 1].
Then g(0) = g(1) = 0, but g′(λ) = (ϑ1−vt2)tr Je(λϑ1+(1−λ) (ϑ1−ϑ2) > 0
on (0, 1), which is not possible since g(1)− g(0) =

∫ 1
0 g(λ) dλ.

# 5, p.83. L(X, ϑ) =
∏

i fXi
(Xi, 1/ϑ) =

∏

i (1/Xi!)ϑ
−nX e−n/ϑ, which

is maximized in ϑ at 1/X. Since
√
n (X − 1/ϑ) ∼ N (0, 1/ϑ) and

g(z) = 1/z satisfies g′(1/ϑ) = −ϑ2 in the ∆-method, we get
√
n (1/X −

ϑ) ∼ N (0, (1/ϑ) (−ϑ)2) = N (0, ϑ3).

# 9. L(X, ϑ) = ϑ−n
∏

i I[Xi≤ϑ] = ϑ−n I[maxXi≤ϑ], and this is maximized

in ϑ at ϑ̂ = maxi Xi. To show consistent and not asymptotically normal,
calculate

P (ϑ̂ ≤ ϑ− t

n
) = (P (X1 ≤ ϑ− t

n
))n = (1− t

nϑ
)n = exp(−t/ϑ)

So the asymptotic distribution of n(ϑ− ϑ̂) is Expon(1/ϑ).

# 14. The ingredients of this problem, like the Example 5.26 on which
it is based by analogy, are: (i) an unobserved component Zi associated
with each observation (Xi, Yi), (ii) a sufficient statistic Ui(ϑ) for Zi

if the observation (Xi, Yi) and ϑ are given; and (iii) a function arising
from factorization of the likelihood for (Xi, Yi, Zi) which, after correcting
for conditional expectation given Ui(ϑ) under the model with parameter ϑ,
can serve as estimating function ψ.

In this example, using h to denote the density of Zi, we have log-
likelihood and factorization as follows:

log fX,Y,Z(x, y, z) = log
h(z)

2πσ2
− 1

2σ2
(x2+(1+β2)z2+(y−α)2−2z(x+β(y−α)))

= log
h(z)

2σ2π
− 1

2(1 + β2)σ2

{

(u− z(1 + β2))2 + (y − α− βx)2
}

where u ≡ x + β(y − α), and we define the sufficient ‘statistic’, for known
(α, β, σ2), by Ui(α, β) = Xi + β(Yi − α). The likelihood factorization (or
the hint given in class to think about the ML estimating function when Zi

is absent) suggests to take ψ(Xi, Yi, α, β) as

−∇α,β

[

(Yi − α− βXi)
2

(1 + β2)

]

=
Yi − α− βXi

1 + β2

(

1
Ui/(1 + β

2)

)

(1)
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corrrected if necessary by its conditional expectation given Ui . To find the
correction-term, we need to calculate the conditional distribution (for given
(α, β)) of Xi given Ui which by sufficiency is the same as the conditional
distribution of Xi given Ui, Zi. Recall that Zi (with mean and vari-
ance which we denote µZ , σ

2
Z) is not itself assumed to be a normal random

variable, so we find the conditional distribution from first principles: first
integrating out the x variable from fX,U,Z(x, u, z), we find that fU,Z(u, z)
is proportional to exp(−(u/β − (1 + β2)x)2/(2σ2(1 + β2))). Therefore,

fX|U,Z(x|u, z) ∝ exp
(

− (u− (1 + β
2)x/β)2

2σ2(1 + β2)

)

, hence ∼ N
( u

1 + β2
,
σ2 β2

1 + β2

)

Now

E(Xi |Ui) =
Ui

1 + β2
, E(Yi−α−βXi |Ui) = E(

1

β
(Ui−(1+β2)Xi) |Ui) = 0

and it follows that expressions (1) have expectation 0. Now we will cal-
culate the V, W , matrices arising in the asymptotic distribution theory of
estimating-equation solutions, and will find that both of these matrices are
proportional to the same matrix

Σ ≡ E

(

1
Ui/(1 + β

2)

)⊗2

=

(

1
µZ

)⊗2

+

(

0 0
0 1

)

(1 + β2)2(σ2
Z + σ

2) + β2σ2

(1 + β2)2

where in the last term we have inserted the unconditional variance of Ui =
(1 + β2)(Zi + ei) + βfi. Then, repeatedly using the preceding conditional
expectation of Yi − α− βXi equal to 0 in order to simplify expressions,

V = Eα,β,σ2

(

−∇tr
α,β ψ(X1, Y1, α, β)

)

=
1

1 + β2
E

(

1
Ui/(1 + β

2)

)(

1
Xi

)tr

which implies, after substituting E(Xi|Ui) = Ui/(1 + β
2),

V =
1

1 + β2
Σ

Next,
W = Eα,β,σ2

(

ψ(Xi, Yi, α, β)
⊗2
)

= (1 + β2)−2E( (
Ui
β
− 1 + β2

β
Xi)

2

(

1
Ui/(1 + β

2)

)⊗2

)
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which by substitution of the conditional variance for Xi given Ui yields

W =
1

β2
E(

σ2β2

1 + β2

(

1
Ui/(1 + β

2)

)⊗2

) = σ2 V

The estimating function ψ leads to uniquely defined estimators as follows:
n
∑

i=1

(Yi − α− βXi) = 0 =⇒ Y − α− βX = 0

and after substituting the last equation we find
n
∑

i=1

(Yi−α−βXi)Ui = 0 ⇒ 1

n− 1
n
∑

i=1

(Yi−Y −β(Xi−X)) (Yi−Xi/β) = 0

which yields a unique solution using s2
y − s2

x + (β
−1 − β)sxy = 0. The

hypotheses of our asymptotic theorem on estimating equations are readily
checked, and the net result of that theorem is that

√
n
(

(

α̃− α

β̃ − β

)

D−→ N (0 , σ2 (1 + β2) Σ)

# 16. The estimator under consideration is ϑ̃ = argminϑ
∑n

i=1 |Yi −
fϑ(Xi)|, which you would expect to converge in probability to a minimizer
ϑ∗ of E|Y1 − fϑ(X1)|. In fact, Theorem 5.14 could easily be used to prove
that. Or, with some further assumptions on fϑ, one could guarantee that
the minimizer ϑ∗ would be unique, in which case a Theorem like 5.7 would
establish consistency. The asymptotic distribution of

√
n (ϑ̃ − ϑ∗) would

then be normal with mean zero and an asymptotic variance as in Theorem
5.23. All of this depends on appropriate smoothness of E|Y1 − fϑ(X1)| in
ϑ, which we must verify, as follows, using the same idea as in Example 5.24,
p. 55.

E|Y1−fϑ(X1)| = E|e1+fϑ∗(X1)−fϑ(X1)| =
∫ ∫

{

(−z+fϑ(x)−fϑ∗(x))+

+(−z + fϑ(x)− fϑ∗(x))
−
}

dzdx

Therefore, using the Fundamental Theorem to remove the terms arising from
differentiation of limits of integration (in z, from −∞ to fϑ(x)− fϑ∗(x)
for (·)+, and from fϑ(x)− fϑ∗(x) to ∞ for (·)−, we obtain
∇ϑE|Y1−fϑ(X1)| =

∫ ∫

{

I[z≤fϑ(x)−fϑ∗
(x)]− I[z>fϑ(x)−fϑ∗

(x)]

}

∇ϑ fϑ(x) fe(z) dz dx

=
∫ ∫

(2Fe(fϑ(x)− fϑ∗(x))− 1) ∇ϑ fϑ(x) dx
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