Stat 710 HW2 Solutions

# 1 in-class. We are considering iid N(u,0?) rv.’s X; and o =
(u,0), with generalized method of moments estimators defined in terms of

e() = Ey((Ixicp, Ixa<y)) = (2(=(1+ p)/0), (1 = p)/0)). These
moment estimators (f, &) are uniquely determined from the equations
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The Jacobian derivative matrix J, is given by
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We learn from Theorem 4.1 that these generalized moment estimators are
asymptotically normal with mean ¥} and asymptotic variance (without factor
1/n) given at py=0,00=1 by
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# 1, p.40. Here EX? = 9?1 [! 2%dz = 9?/3, wich implies
< _ 2
the moment-based estimator is ¥ = g(X?) = (% A Xf)l/ . Then

997 (9) = %2 (#?/3)71/2 = 3/(29), while /n(n"'Tp, X7 - 9?/3) =P
N(0,49%/45). This implies /n (9 — ) ~ N(0,9%/5).
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# 6. Following the hint: suppose 1, ¥, are distinct zero-points for e on
the convex set ©, and g(\) = (91 — vt2)" e(A + (1 — N\)dy) for X € [0,1].
Then ¢(0) = ¢g(1) =0, but ¢’'(\) = (h—vt2)" Jo(AM+(1=X) ($1—102) >0
on (0,1), which is not possible since g(1) — g(0) = fy g(\) d\.

# 5, p.83. L(X,9) =TI; fx,(Xi,1/9) =1, (1/X;1) 97X /Y which
is maximized in ¢ at 1/X. Since /n(X —1/9) ~ N(0,1/9) and
g(z) = 1/z satisfies ¢/(1/9) = —9? in the A-method, we get /n (1/X —
9) ~ N0, (1/9) (=9)%) = N (0,9?).

#9. L(X,0) = 07" [; {ix,<0) = U7 Ijmax x,<v), and this is maximized
in ¥ at J=max; X;. To show consistent and not asymptotically normal,
calculate
t t

) = (P(X1 <9 — ﬁ))n = (1- %)n = exp(—t/V)

So the asymptotic distribution of n(9 —9) is Erpon(1/9).
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# 14. The ingredients of this problem, like the Example 5.26 on which
it is based by analogy, are: (i) an unobserved component Z; associated
with each observation (X;,Y;), (ii) a sufficient statistic U;(¢) for Z;
if the observation (X;,Y;) and ¢ are given; and (iii) a function arising
from factorization of the likelihood for (X;,Y;, Z;) which, after correcting
for conditional expectation given U;(¢)) under the model with parameter ¥,
can serve as estimating function 1.

In this example, using h to denote the density of Z;, we have log-
likelihood and factorization as follows:
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where u =z + ((y — «), and we define the sufficient ‘statistic’, for known
(o, B,6%), by Ui(a,B) = X;+ B(Y; — ). The likelihood factorization (or
the hint given in class to think about the ML estimating function when Z;
is absent) suggests to take ¥(X;,Y;, a,3) as
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log fxvz(x,y,2) = log (2% +(1+0%)2"+(y—a)*=2z(a+6(y—a)))

= log




corrrected if necessary by its conditional expectation given U; . To find the
correction-term, we need to calculate the conditional distribution (for given
(a, B)) of X; given U; which by sufficiency is the same as the conditional
distribution of X; given U;, Z;. Recall that Z; (with mean and vari-
ance which we denote iz, 0%) is not itself assumed to be a normal random
variable, so we find the conditional distribution from first principles: first
integrating out the = variable from fx yz(z,u,2), we find that fy z(u, 2)
is proportional to exp(—(u/3 — (1 + %)z)?/(26%*(1 + ?))). Therefore,
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Now

E(X;|U;) = U , BE(Yi—a—0X;|U;) = E(l<Ui_<1+52)Xi) |Ui) =0
1+ 2 B

and it follows that expressions (1) have expectation 0. Now we will cal-

culate the V, W, matrices arising in the asymptotic distribution theory of

estimating-equation solutions, and will find that both of these matrices are

proportional to the same matrix
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where in the last term we have inserted the unconditional variance of U; =
(1+ B*)(Z; + e;) + Bfi. Then, repeatedly using the preceding conditional
expectation of Y; —a — X; equal to 0 in order to simplify expressions,
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which implies, after substituting E(X;|U;) = U;/(1 + 3?),
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Next,
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which by substitution of the conditional variance for X; given U; yields
1 o2B 1 @2
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The estimating function 1 leads to uniquely defined estimators as follows:
Z(Y;—a—ﬁXi):O — Y—-a—-8X =0
i=1
and after substituting the last equation we find

n
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which yields a unique solution using sf/ — 24+ (B =P)sy = 0. The
hypotheses of our asymptotic theorem on estimating equations are readily
checked, and the net result of that theorem is that
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# 16. The estimator under consideration is 9 = argming Sy —
fo(X;)|, which you would expect to converge in probability to a minimizer
U, of ElY) — fy(X1)|. In fact, Theorem 5.14 could easily be used to prove
that. Or, with some further assumptions on fy, one could guarantee that
the minimizer 9, would be unique, in which case a Theorem like 5.7 would
establish consistency. The asymptotic distribution of /n (9 — ¥,) would
then be normal with mean zero and an asymptotic variance as in Theorem
5.23. All of this depends on appropriate smoothness of E|Y; — fy(X1)| in

¥, which we must verify, as follows, using the same idea as in Example 5.24,
p- 55.

EYi=f5(X0)| = Bler+fo.(X)=foX0)| = [ [{(=+fole) = fo. @)

(2t fole) — o () Yz
Therefore, using the Fundamental Theorem to remove the terms arising from
differentiation of limits of integration (in z, from — oo to fy(z) — fs, ()
for ()", and from fy(z) — fo.(x) to oo for (-)7, we obtain

Vy ElYi=fo(X0)] = //{[[Zﬁfﬂ(x)*fﬁ*(z)]_I[Z>fﬂ($)*fﬂ*(x)]}vﬁfﬁ(x)f@(z)d’zdl.

= [ [ CE(fo(@) = fo.(2)) = 1) Vo fo(e) da
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