Stat 710 HW2 Solutions

\# 1 in-class. We are considering iid $\mathcal{N}\left(\mu, \sigma^{2}\right)$ r.v.'s X_{i}, and $\vartheta=$ (μ, σ), with generalized method of moments estimators defined in terms of $\mathbf{e}(\vartheta)=E_{\vartheta}\left(\left(I_{\left[X_{1} \leq-1\right]}, I_{\left[X_{1} \leq 1\right]}\right)\right)=(\Phi(-(1+\mu) / \sigma), \Phi((1-\mu) / \sigma))$. These moment estimators $(\tilde{\mu}, \tilde{\sigma})$ are uniquely determined from the equations

$$
\begin{aligned}
\frac{-2 \tilde{\mu}}{\tilde{\sigma}} & =\Phi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} I_{\left[X_{i} \leq 1\right]}\right)+\Phi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} I_{\left[X_{i} \leq-1\right]}\right) \\
\frac{2}{\tilde{\sigma}} & =\Phi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} I_{\left[X_{i} \leq 1\right]}\right)-\Phi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} I_{\left[X_{i} \leq-1\right]}\right)
\end{aligned}
$$

The Jacobian derivative matrix $J_{\mathbf{e}}$ is given by

$$
\left(\begin{array}{cc}
\frac{-1}{\sigma} \phi((1+\mu) / \sigma) & \frac{1+\mu}{\sigma^{2}} \phi((1+\mu) / \sigma) \\
\frac{-1}{\sigma} \phi((1-\mu) / \sigma) & \frac{\mu-1}{\sigma^{2}} \phi((1-\mu) / \sigma)
\end{array}\right)
$$

We learn from Theorem 4.1 that these generalized moment estimators are asymptotically normal with mean ϑ and asymptotic variance (without factor $1 / n)$ given at $\mu_{0}=0, \sigma_{0}=1$ by

$$
\begin{gathered}
J_{\mathbf{e}}^{-1} E\left(\begin{array}{cc}
I_{\left[X_{1} \leq-1\right]} & I_{\left[X_{1} \leq-1\right]} \\
I_{\left[X_{1} \leq-1\right]} & I_{\left[X_{1} \leq 1\right]}
\end{array}\right) J_{\mathbf{e}}^{-1 t r} \\
=\frac{1}{\phi^{2}(1)}\left(\begin{array}{rr}
-1 & 1 \\
-1 & -1
\end{array}\right)^{-1}\left(\begin{array}{rr}
\Phi(-1) & \Phi(-1) \\
\Phi(-1) & \Phi(1)
\end{array}\right)\left(\begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array}\right)^{-1} \\
=\frac{1}{4 \phi^{2}(1)}\left(\begin{array}{rr}
\Phi(1)+3 \Phi(-1) & \Phi(1)-\Phi(-1) \\
\Phi(1)-\Phi(-1) & \Phi(1)-\Phi(-1)
\end{array}\right)
\end{gathered}
$$

and $\operatorname{Avar}(\tilde{\mu})=(3 \Phi(-1)+\Phi(1)) /\left(4 \phi^{2}(1)\right)=5.62$ versus the corresponding value of 1 for $\operatorname{Avar}(\bar{X})$.
\# 1, p.40. Here $E X_{i}^{2}=\vartheta^{2} \frac{1}{2} \int_{-1}^{1} x^{2} d x=\vartheta^{2} / 3$, wich implies the moment-based estimator is $\tilde{\vartheta}=g\left(\overline{X^{2}}\right)=\left(\frac{3}{n} \sum_{i=1}^{n} X_{i}^{2}\right)^{1 / 2}$. Then $g^{\prime}\left(g^{-1}(\vartheta)\right)=\frac{\sqrt{3}}{2}\left(\vartheta^{2} / 3\right)^{-1 / 2}=3 /(2 \vartheta)$, while $\sqrt{n}\left(n^{-1} \sum_{i=1}^{n} X_{i}^{2}-\vartheta^{2} / 3\right) \rightarrow^{\mathcal{D}}$ $\mathcal{N}\left(0,4 \vartheta^{4} / 45\right)$. This implies $\sqrt{n}(\tilde{\vartheta}-\vartheta) \sim \mathcal{N}\left(0, \vartheta^{2} / 5\right)$.
\# 6. Following the hint: suppose $\vartheta_{1}, \vartheta_{2}$ are distinct zero-points for \mathbf{e} on the convex set Θ, and $g(\lambda)=\left(\vartheta_{1}-v t_{2}\right)^{t r} \mathbf{e}\left(\lambda \vartheta_{1}+(1-\lambda) \vartheta_{2}\right)$ for $\lambda \in[0,1]$. Then $g(0)=g(1)=0$, but $g^{\prime}(\lambda)=\left(\vartheta_{1}-v t_{2}\right)^{\operatorname{tr}} J_{\mathbf{e}}\left(\lambda \vartheta_{1}+(1-\lambda)\left(\vartheta_{1}-\vartheta_{2}\right)>0\right.$ on $(0,1)$, which is not possible since $g(1)-g(0)=\int_{0}^{1} g(\lambda) d \lambda$.
\# 5, p.83. $L(\mathbf{X}, \vartheta)=\prod_{i} f_{X_{i}}\left(X_{i}, 1 / \vartheta\right)=\prod_{i}\left(1 / X_{i}!\right) \vartheta^{-n \bar{X}} e^{-n / \vartheta}$, which is maximized in ϑ at $1 / \bar{X}$. Since $\sqrt{n}(\bar{X}-1 / \vartheta) \sim \mathcal{N}(0,1 / \vartheta)$ and $g(z)=1 / z$ satisfies $g^{\prime}(1 / \vartheta)=-\vartheta^{2}$ in the Δ-method, we get $\sqrt{n}(1 / \bar{X}-$ $\vartheta) \sim \mathcal{N}\left(0,(1 / \vartheta)(-\vartheta)^{2}\right)=\mathcal{N}\left(0, \vartheta^{3}\right)$.
\# 9. $L(\mathbf{X}, \vartheta)=\vartheta^{-n} \Pi_{i} I_{\left[X_{i} \leq \vartheta\right]}=\vartheta^{-n} I_{\left[\max X_{i} \leq \vartheta\right]}$, and this is maximized in ϑ at $\hat{\vartheta}=\max _{i} X_{i}$. To show consistent and not asymptotically normal, calculate

$$
P\left(\hat{\vartheta} \leq \vartheta-\frac{t}{n}\right)=\left(P\left(X_{1} \leq \vartheta-\frac{t}{n}\right)\right)^{n}=\left(1-\frac{t}{n \vartheta}\right)^{n}=\exp (-t / \vartheta)
$$

So the asymptotic distribution of $n(\vartheta-\hat{\vartheta})$ is Expon $(1 / \vartheta)$.
\# 14. The ingredients of this problem, like the Example 5.26 on which it is based by analogy, are: (i) an unobserved component Z_{i} associated with each observation $\left(X_{i}, Y_{i}\right)$, (ii) a sufficient statistic $U_{i}(\vartheta)$ for Z_{i} if the observation $\left(X_{i}, Y_{i}\right)$ and ϑ are given; and (iii) a function arising from factorization of the likelihood for (X_{i}, Y_{i}, Z_{i}) which, after correcting for conditional expectation given $U_{i}(\vartheta)$ under the model with parameter ϑ, can serve as estimating function ψ.

In this example, using h to denote the density of Z_{i}, we have loglikelihood and factorization as follows:
$\log f_{X, Y, Z}(x, y, z)=\log \frac{h(z)}{2 \pi \sigma^{2}}-\frac{1}{2 \sigma^{2}}\left(x^{2}+\left(1+\beta^{2}\right) z^{2}+(y-\alpha)^{2}-2 z(x+\beta(y-\alpha))\right)$

$$
=\log \frac{h(z)}{2 \sigma^{2} \pi}-\frac{1}{2\left(1+\beta^{2}\right) \sigma^{2}}\left\{\left(u-z\left(1+\beta^{2}\right)\right)^{2}+(y-\alpha-\beta x)^{2}\right\}
$$

where $u \equiv x+\beta(y-\alpha)$, and we define the sufficient 'statistic', for known $\left(\alpha, \beta, \sigma^{2}\right)$, by $U_{i}(\alpha, \beta)=X_{i}+\beta\left(Y_{i}-\alpha\right)$. The likelihood factorization (or the hint given in class to think about the ML estimating function when Z_{i} is absent) suggests to take $\psi\left(X_{i}, Y_{i}, \alpha, \beta\right)$ as

$$
\begin{equation*}
-\nabla_{\alpha, \beta}\left[\frac{\left(Y_{i}-\alpha-\beta X_{i}\right)^{2}}{\left(1+\beta^{2}\right)}\right]=\frac{Y_{i}-\alpha-\beta X_{i}}{1+\beta^{2}}\binom{1}{U_{i} /\left(1+\beta^{2}\right)} \tag{1}
\end{equation*}
$$

corrrected if necessary by its conditional expectation given U_{i}. To find the correction-term, we need to calculate the conditional distribution (for given $(\alpha, \beta))$ of X_{i} given U_{i} which by sufficiency is the same as the conditional distribution of X_{i} given U_{i}, Z_{i}. Recall that Z_{i} (with mean and variance which we denote μ_{Z}, σ_{Z}^{2}) is not itself assumed to be a normal random variable, so we find the conditional distribution from first principles: first integrating out the x variable from $f_{X, U, Z}(x, u, z)$, we find that $f_{U, Z}(u, z)$ is proportional to $\exp \left(-\left(u / \beta-\left(1+\beta^{2}\right) x\right)^{2} /\left(2 \sigma^{2}\left(1+\beta^{2}\right)\right)\right)$. Therefore,
$f_{X \mid U, Z}(x \mid u, z) \propto \exp \left(-\frac{\left(u-\left(1+\beta^{2}\right) x / \beta\right)^{2}}{2 \sigma^{2}\left(1+\beta^{2}\right)}\right), \quad$ hence $\sim \mathcal{N}\left(\frac{u}{1+\beta^{2}}, \frac{\sigma^{2} \beta^{2}}{1+\beta^{2}}\right)$
Now
$E\left(X_{i} \mid U_{i}\right)=\frac{U_{i}}{1+\beta^{2}}, \quad E\left(Y_{i}-\alpha-\beta X_{i} \mid U_{i}\right)=E\left(\left.\frac{1}{\beta}\left(U_{i}-\left(1+\beta^{2}\right) X_{i}\right) \right\rvert\, U_{i}\right)=0$
and it follows that expressions (1) have expectation 0 . Now we will calculate the V, W, matrices arising in the asymptotic distribution theory of estimating-equation solutions, and will find that both of these matrices are proportional to the same matrix

$$
\Sigma \equiv E\binom{1}{U_{i} /\left(1+\beta^{2}\right)}^{\otimes 2}=\binom{1}{\mu_{Z}}^{\otimes 2}+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \frac{\left(1+\beta^{2}\right)^{2}\left(\sigma_{Z}^{2}+\sigma^{2}\right)+\beta^{2} \sigma^{2}}{\left(1+\beta^{2}\right)^{2}}
$$

where in the last term we have inserted the unconditional variance of $U_{i}=$ $\left(1+\beta^{2}\right)\left(Z_{i}+e_{i}\right)+\beta f_{i}$. Then, repeatedly using the preceding conditional expectation of $Y_{i}-\alpha-\beta X_{i}$ equal to 0 in order to simplify expressions,
$V=E_{\alpha, \beta, \sigma^{2}}\left(-\nabla_{\alpha, \beta}^{t r} \psi\left(X_{1}, Y_{1}, \alpha, \beta\right)\right)=\frac{1}{1+\beta^{2}} E\binom{1}{U_{i} /\left(1+\beta^{2}\right)}\binom{1}{X_{i}}^{t r}$
which implies, after substituting $E\left(X_{i} \mid U_{i}\right)=U_{i} /\left(1+\beta^{2}\right)$,

$$
V=\frac{1}{1+\beta^{2}} \Sigma
$$

Next,

$$
\begin{gathered}
W=E_{\alpha, \beta, \sigma^{2}}\left(\psi\left(X_{i}, Y_{i}, \alpha, \beta\right)^{\otimes 2}\right) \\
=\left(1+\beta^{2}\right)^{-2} E\left(\left(\frac{U_{i}}{\beta}-\frac{1+\beta^{2}}{\beta} X_{i}\right)^{2}\binom{1}{U_{i} /\left(1+\beta^{2}\right)}^{\otimes 2}\right)
\end{gathered}
$$

which by substitution of the conditional variance for X_{i} given U_{i} yields

$$
W=\frac{1}{\beta^{2}} E\left(\frac{\sigma^{2} \beta^{2}}{1+\beta^{2}}\binom{1}{U_{i} /\left(1+\beta^{2}\right)}^{\otimes 2}\right)=\sigma^{2} V
$$

The estimating function ψ leads to uniquely defined estimators as follows:

$$
\sum_{i=1}^{n}\left(Y_{i}-\alpha-\beta X_{i}\right)=0 \quad \Longrightarrow \quad \bar{Y}-\alpha-\beta \bar{X}=0
$$

and after substituting the last equation we find
$\sum_{i=1}^{n}\left(Y_{i}-\alpha-\beta X_{i}\right) U_{i}=0 \Rightarrow \frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}-\beta\left(X_{i}-\bar{X}\right)\right)\left(Y_{i}-X_{i} / \beta\right)=0$ which yields a unique solution using $s_{y}^{2}-s_{x}^{2}+\left(\beta^{-1}-\beta\right) s_{x y}=0$. The hypotheses of our asymptotic theorem on estimating equations are readily checked, and the net result of that theorem is that

$$
\sqrt{n}\left(\binom{\tilde{\alpha}-\alpha}{\tilde{\beta}-\beta} \xrightarrow{\mathcal{D}} \mathcal{N}\left(\mathbf{0}, \sigma^{2}\left(1+\beta^{2}\right) \Sigma\right)\right.
$$

\# 16. The estimator under consideration is $\tilde{\vartheta}=\arg \min _{\vartheta} \sum_{i=1}^{n} \mid Y_{i}-$ $f_{\vartheta}\left(X_{i}\right) \mid$, which you would expect to converge in probability to a minimizer ϑ_{*} of $E\left|Y_{1}-f_{\vartheta}\left(X_{1}\right)\right|$. In fact, Theorem 5.14 could easily be used to prove that. Or, with some further assumptions on f_{ϑ}, one could guarantee that the minimizer ϑ_{*} would be unique, in which case a Theorem like 5.7 would establish consistency. The asymptotic distribution of $\sqrt{n}\left(\tilde{\vartheta}-\vartheta_{*}\right)$ would then be normal with mean zero and an asymptotic variance as in Theorem 5.23. All of this depends on appropriate smoothness of $E\left|Y_{1}-f_{\vartheta}\left(X_{1}\right)\right|$ in ϑ, which we must verify, as follows, using the same idea as in Example 5.24, p. 55.

$$
\begin{gathered}
E\left|Y_{1}-f_{\vartheta}\left(X_{1}\right)\right|=E\left|e_{1}+f_{\vartheta_{*}}\left(X_{1}\right)-f_{\vartheta}\left(X_{1}\right)\right|=\iint\left\{\left(-z+f_{\vartheta}(x)-f_{\vartheta_{*}}(x)\right)^{+}\right. \\
\left.+\left(-z+f_{\vartheta}(x)-f_{\vartheta_{*}}(x)\right)^{-}\right\} d z d x
\end{gathered}
$$

Therefore, using the Fundamental Theorem to remove the terms arising from differentiation of limits of integration (in z, from $-\infty$ to $f_{\vartheta}(x)-f_{\vartheta_{*}}(x)$ for $(\cdot)^{+}$, and from $f_{\vartheta}(x)-f_{\vartheta_{*}}(x)$ to ∞ for $(\cdot)^{-}$, we obtain

$$
\begin{aligned}
\nabla_{\vartheta} E\left|Y_{1}-f_{\vartheta}\left(X_{1}\right)\right| & =\iint\left\{I_{\left[z \leq f_{\vartheta}(x)-f_{\vartheta}(x)\right]}-I_{\left[z>f_{\vartheta}(x)-f_{\vartheta_{*}}(x)\right]}\right\} \nabla_{\vartheta} f_{\vartheta}(x) f_{e}(z) d z d x \\
& =\iint\left(2 F_{e}\left(f_{\vartheta}(x)-f_{\vartheta_{*}}(x)\right)-1\right) \nabla_{\vartheta} f_{\vartheta}(x) d x
\end{aligned}
$$

