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Solutions to Stat 710 Problem Set 2

#19.3. Z(t) is a standard Brownian motion, which implies that for 0 ≤ t ≤ 1,
Z(t)− tZ(1) ≡ Y (t) is a process Gaussian finite dimensional distributions with
mean-0 and covariances for 0 ≤ s ≤ t ≤ 1 given by Cov(Y (s), Y (t)) =

Cov(Z(s), Z(t)) − sCov(Z(1), Z(t)) − t Cov(Z(s), Z(1)) + st V ar(Z(1))

which is = s − st − st + st = (s(1 − t), the covariance of Brownian bridge.
Since finite dimensional distributions uniquely determine the law of the process
on l∞[0, 1] or C[0, 1], we are done.

#19.4. Here Fm, Gn are empirical distribution functions, and via the classical
Donsker Theorem, as m,n→ ∞,

√
m (Fm − F )

D→ W o ◦ F ,
√
m (Gn −G)

D→ W o ◦G in l∞(R)

From now on, assume that as m, n→ ∞, also m
m+n → λ ∈ (0, 1).

(i) Then by the Continuous Mapping Theorem, or simply independence of
the two empirical processes (for X observations and Y observations respec-
tively), under H0 : F = G,

√
m+ n (Fm(·)−Gn(·)) D→ 1√

λ
W o

1 ◦F − 1√
1 − λ

W o
2 ◦G

D
=

1
√

λ(1 − λ)
W o◦F

where W o
1 , W

o
2 , W

o are Brownian bridge processes, the first two of which are
independent. Thus under the null hypothesis the Continuous Mapping Theorem
implies

√
m+ nKm,n ≡ sup

t
|
√
m+ n (Fm(t) −Gn(t)| D→ 1

√

λ(1 − λ)
sup

s
|W o(s)|

as long as F = G is continuous.

(ii). By the argument given in (i), for general fixed F 6= G,

√
m+ n (Fm(·) −Gn(·) − F +G)

D→ 1√
λ
W o

1 ◦ F − 1√
1 − λ

W o
2 ◦G

in l∞(R) as m,n → ∞. Take c
√
m+ n equal to the 1 − α quantile of the

(continuously distributed) random variable supt |W o(t)|/
√

λ(1 − λ), and for
arbitrarily small fixed ε > 0, take η

√
m+ n to be the 1 − ε quantile of the

same r.v. It follows that under probabilities with any fixed F 6= G,

P (Km,n > c) ≥ P (
√
m+ n ‖Fm−Gn−F+G‖∞ ≤ η,

√
m+ n ‖F−G‖∞ > η−c)

which converges to 1− ε as m,n→ ∞. Since ε was arbitrary, this shows the
test based upon Km,n is consistent against all fixed alternatives.
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(iii) Assume F0 = G0, F = Fg/
√

m, G = Gh/
√

n. It is then easy to check
by differentiability of the d.f. families with respect to the scalar parameter θ,

√
m+ n (Fm(·) −Gn(·)) D≈ 1

√

λ(1 − λ)
W o +

g√
λ
F ′

0 − h√
1 − λ

G′
0

from which power can readily be calculated (although not in closed form).

#19.5. Now F = {f : [0, 1] → [0, 1] : ∀ x, y, |f(x) − f(y)| ≤ |x− y|}. Fix
ε > 0 and points ti = min(i ε/2, 1) for i = 0, 1, . . . , [2/ε] + 1. Bracket every
f ∈ F (with gap ε in uniform norm) by functions

hL,τ ≡
[2/ε]+1
∑

i=0

I[iε/2, (i+1)ε/2) τi , hU,τ ≡ min(hL,τ + ε, 1)

where the vector τ defining these bracketing functions for f has components
τi defined = max{tj : tj ≤ f(ti)}. Moreover, since such τi = tj must
have τi+1 equal to one of tj−1, tj , tj+1, we can count that the number of such
bracketing intervals is ≤ (3/ε) · 33/ε.

#19.6. (i) Here C = {(a, b] : −∞ < a ≤ b < ∞}. Such intervals obviously
pick out individual points from among 2 but cannot separate the middle of 3
ordered points on the line. Therefore V C(C) > 2 but ≤ 3 and therefore is
equal to 3.

(ii) Now C = {(−∞, a1] × (−∞, a2] : a1, a2 ∈ R} ⊂ R2. Again, obviously
V C(C) > 2 since C picks out all subsets of two points (a1, a2), (b1, b2) which
satisfy a1 < b1, a2 > b2. Now consider sets of three points a, b, c in the
plane, and without loss of generality let c1 ≤ max(a1, b1) and c2 ≤ max(a2, b2).
Then any set C ∈ C containing a, b necessarily contains c also. Therefore
V C(C) = 3.

(iii) Now fix a monotonic function ψ, with C equal to the set of subgraphs
for functions ψ(· − θ) as θ ranges over the whole real line. Obviously
V C(C) = 2, since for any two points (xi, ti), the point with smaller value of
ψ(xi) − ti is necessarily contained in any subgraph which contains the larger
value ψ(xi) − ti.

#19.7. Let F be VC, i.e. the collection of sets {(x, t) : f(x) > t} with f
ranging over all of F , is VC.

(i) {x1, . . . , xn} is shattered by {f > 0}f∈F whenever {(x1, 0), . . . , (xn, 0)}
is shattered by F-subgraphs, denoted SGF .

(ii) Now fix a function g, and consider whether G =
{

{(x, t) : f(x)+g(x) >

t} : f ∈ F
}

shatters {(x1, t1), . . . , (xn, tn)} = Sn. Note

{(xik
, tik

), k = 1, . . . , r} = {(xi, ti) ∈ Sn : f(xi) > ti − g(xi)}
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which says that these indices ik are those i for which f(xi) > ti − g(xi).
Hence G shatters Sn if and only if SGF shatters {(xi, ti − g(xi))}. Thus
the VC indices of G and SGF are the same !

(iii) The argument and result are similar to that in (ii) except that now,
since we consider second coordinates ti/g(xi), we must consider separately
points xi with g(xi) < 0, = 0, and > 0. It is easy to argue that within any
set of 3n − 2 points (xi, ti) there must be at least n satisfying one of the
conditions g(xi) < 0,= 0, or > 0. Then if n = V C(SGF ), at least one of
the three sets {(xi, ti) : g(xi) < 0, f(x)i < ti/g(xi)} or {(xi, ti) : g(xi) >
0, f(x)i > ti/g(xi)}, or {(xi, ti) : g(xi) = 0 > ti} fails to be shattered by
subgraphs in SGF .

#19.10. Now m̃ = med(X1, . . . , Xn) is a near root of
∑n

i=1 sgn(Xi−θ). We
are asked for the asymptotic distribution of n−1

∑n
i=1 |Xj − m̃|. We assume

the distribution of Xi is continuous, with unique median m0. (That is, m0

is a point of left and right increase for the d.f. F of Xi.)

First use the Donsker property of F = {sgn(x − θ), |x − θ| : θ ∈ R } to
conclude from Lemma 19.24 that as n→ ∞

1√
n

n
∑

j=1

(

|Xj − m̃| − (E|X1 − θ|)θ=m̃ − |Xj −m0| + E|X1 −m0|
)

P→ 0

Also, near m0 we know (from p.55) that E|X1−θ|−E|X1| = 2
∫ θ

0
F (x)dx−θ,

which implies that

√
n
(

E|Xi − θ|θ=m̃ − E|X1 −m0|
) D≈ √

n (m̃−m0) (2F (m0) − 1) = 0

Therefore
1√
n

n
∑

j=1

(

|Xj − m̃| − |Xj −m0|
)

P→ 0

which implies

1√
n

n
∑

j=1

(

|Xj − m̃| − E|X1 −m0|
) D≈ 1√

n

n
∑

j=1

(

|Xj −m0| − E|X1 −m0|
)

which converges in distribution by the usual CLT to N
(

0, Var(|X1 −m0|)
)

.
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