Eric Slud

Fall 2007

Solutions to Stat 710 Problem Set 2

#19.3. Z(t) is a standard Brownian motion, which implies that for $0 \le t \le 1$, $Z(t) - tZ(1) \equiv Y(t)$ is a process Gaussian finite dimensional distributions with mean-0 and covariances for $0 \le s \le t \le 1$ given by Cov(Y(s), Y(t)) =

$$Cov(Z(s), Z(t)) - s Cov(Z(1), Z(t)) - t Cov(Z(s), Z(1)) + st Var(Z(1))$$

which is = s - st - st + st = (s(1 - t)), the covariance of Brownian bridge. Since finite dimensional distributions uniquely determine the law of the process on $l^{\infty}[0, 1]$ or $\mathcal{C}[0, 1]$, we are done.

#19.4. Here F_m , G_n are empirical distribution functions, and via the classical Donsker Theorem, as $m, n \to \infty$,

$$\sqrt{m}(F_m - F) \xrightarrow{\mathcal{D}} W^o \circ F$$
, $\sqrt{m}(G_n - G) \xrightarrow{\mathcal{D}} W^o \circ G$ in $l^{\infty}(\mathbf{R})$

From now on, assume that as $m, n \to \infty$, also $\frac{m}{m+n} \to \lambda \in (0, 1)$.

(i) Then by the Continuous Mapping Theorem, or simply independence of the two empirical processes (for X observations and Y observations respectively), under $H_0: F = G$,

$$\sqrt{m+n}\left(F_m(\cdot) - G_n(\cdot)\right) \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda}} W_1^o \circ F - \frac{1}{\sqrt{1-\lambda}} W_2^o \circ G \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda(1-\lambda)}} W^o \circ F$$

where W_1^o, W_2^o, W^o are Brownian bridge processes, the first two of which are independent. Thus under the null hypothesis the Continuous Mapping Theorem implies

$$\sqrt{m+n} K_{m,n} \equiv \sup_{t} |\sqrt{m+n} (F_m(t) - G_n(t))| \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda(1-\lambda)}} \sup_{s} |W^o(s)|$$

as long as F = G is continuous.

(ii). By the argument given in (i), for general fixed $F \neq G$,

$$\sqrt{m+n} \left(F_m(\cdot) - G_n(\cdot) - F + G \right) \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda}} W_1^o \circ F - \frac{1}{\sqrt{1-\lambda}} W_2^o \circ G$$

in $l^{\infty}(\mathbf{R})$ as $m, n \to \infty$. Take $c\sqrt{m+n}$ equal to the $1-\alpha$ quantile of the (continuously distributed) random variable $\sup_t |W^o(t)|/\sqrt{\lambda(1-\lambda)}$, and for arbitrarily small fixed $\epsilon > 0$, take $\eta\sqrt{m+n}$ to be the $1-\epsilon$ quantile of the same r.v. It follows that under probabilities with any fixed $F \neq G$,

$$P(K_{m,n} > c) \ge P(\sqrt{m+n} \, \|F_m - G_n - F + G\|_{\infty} \le \eta, \, \sqrt{m+n} \, \|F - G\|_{\infty} > \eta - c)$$

which converges to $1 - \epsilon$ as $m, n \to \infty$. Since ϵ was arbitrary, this shows the test based upon $K_{m,n}$ is consistent against all fixed alternatives.

(iii) Assume $F_0 = G_0, F = F_{g/\sqrt{m}}, G = G_{h/\sqrt{n}}$. It is then easy to check by differentiability of the d.f. families with respect to the scalar parameter θ ,

$$\sqrt{m+n} \left(F_m(\cdot) - G_n(\cdot) \right) \stackrel{\mathcal{D}}{\approx} \frac{1}{\sqrt{\lambda(1-\lambda)}} W^o + \frac{g}{\sqrt{\lambda}} F_0' - \frac{h}{\sqrt{1-\lambda}} G_0'$$

from which power can readily be calculated (although not in closed form).

#19.5. Now $\mathcal{F} = \{f : [0,1] \to [0,1] : \forall x, y, |f(x) - f(y)| \le |x-y|\}$. Fix $\epsilon > 0$ and points $t_i = \min(i \epsilon/2, 1)$ for $i = 0, 1, \ldots, [2/\epsilon] + 1$. Bracket every $f \in \mathcal{F}$ (with gap ϵ in uniform norm) by functions

$$h_{L,\tau} \equiv \sum_{i=0}^{[2/\epsilon]+1} I_{[i\epsilon/2, (i+1)\epsilon/2)} \tau_i \quad , \qquad h_{U,\tau} \equiv \min(h_{L,\tau} + \epsilon, 1)$$

where the vector τ defining these bracketing functions for f has components τ_i defined = max{ $t_j : t_j \leq f(t_i)$ }. Moreover, since such $\tau_i = t_j$ must have τ_{i+1} equal to one of t_{j-1}, t_j, t_{j+1} , we can count that the number of such bracketing intervals is $\leq (3/\epsilon) \cdot 3^{3/\epsilon}$.

#19.6. (i) Here $C = \{(a, b] : -\infty < a \le b < \infty\}$. Such intervals obviously pick out individual points from among 2 but cannot separate the middle of 3 ordered points on the line. Therefore VC(C) > 2 but ≤ 3 and therefore is equal to 3.

(ii) Now $C = \{(-\infty, a_1] \times (-\infty, a_2] : a_1, a_2 \in \mathbf{R}\} \subset \mathbf{R}^2$. Again, obviously $VC(\mathcal{C}) > 2$ since C picks out all subsets of two points $(a_1, a_2), (b_1, b_2)$ which satisfy $a_1 < b_1, a_2 > b_2$. Now consider sets of three points $\underline{a}, \underline{b}, \underline{c}$ in the plane, and without loss of generality let $c_1 \leq \max(a_1, b_1)$ and $c_2 \leq \max(a_2, b_2)$. Then any set $C \in C$ containing $\underline{a}, \underline{b}$ necessarily contains \underline{c} also. Therefore $VC(\mathcal{C}) = 3$.

(iii) Now fix a monotonic function ψ , with \mathcal{C} equal to the set of subgraphs for functions $\psi(\cdot - \theta)$ as θ ranges over the whole real line. Obviously $VC(\mathcal{C}) = 2$, since for any two points (x_i, t_i) , the point with smaller value of $\psi(x_i) - t_i$ is necessarily contained in any subgraph which contains the larger value $\psi(x_i) - t_i$.

#19.7. Let \mathcal{F} be VC, i.e. the collection of sets $\{(x,t) : f(x) > t\}$ with f ranging over all of \mathcal{F} , is VC.

(i) $\{x_1, \ldots, x_n\}$ is shattered by $\{f > 0\}_{f \in \mathcal{F}}$ whenever $\{(x_1, 0), \ldots, (x_n, 0)\}$ is shattered by \mathcal{F} -subgraphs, denoted $SG_{\mathcal{F}}$.

(ii) Now fix a function g, and consider whether $\mathcal{G} = \left\{ \{(x,t) : f(x) + g(x) > t\} : f \in \mathcal{F} \right\}$ shatters $\{(x_1, t_1), \dots, (x_n, t_n)\} = S_n$. Note

$$\{(x_{i_k}, t_{i_k}), \ k = 1, \dots, r\} = \{(x_i, t_i) \in S_n : \ f(x_i) > t_i - g(x_i)\}$$

which says that these indices i_k are those *i* for which $f(x_i) > t_i - g(x_i)$. Hence \mathcal{G} shatters S_n if and only if $SG_{\mathcal{F}}$ shatters $\{(x_i, t_i - g(x_i))\}$. Thus the VC indices of \mathcal{G} and $SG_{\mathcal{F}}$ are the same !

(iii) The argument and result are similar to that in (ii) except that now, since we consider second coordinates $t_i/g(x_i)$, we must consider separately points x_i with $g(x_i) < 0$, = 0, and > 0. It is easy to argue that within any set of 3n-2 points (x_i, t_i) there must be at least n satisfying one of the conditions $g(x_i) < 0$, = 0, or > 0. Then if $n = VC(SG_{\mathcal{F}})$, at least one of the three sets $\{(x_i, t_i) : g(x_i) < 0, f(x)_i < t_i/g(x_i)\}$ or $\{(x_i, t_i) : g(x_i) > 0, f(x)_i > t_i/g(x_i)\}$, or $\{(x_i, t_i) : g(x_i) = 0 > t_i\}$ fails to be shattered by subgraphs in $SG_{\mathcal{F}}$.

#19.10. Now $\tilde{m} = \text{med}(X_1, \ldots, X_n)$ is a near root of $\sum_{i=1}^n \text{sgn}(X_i - \theta)$. We are asked for the asymptotic distribution of $n^{-1} \sum_{i=1}^n |X_j - \tilde{m}|$. We assume the distribution of X_i is continuous, with unique median m_0 . (That is, m_0 is a point of left and right increase for the d.f. F of X_i .)

First use the Donsker property of $\mathcal{F} = \{ \operatorname{sgn}(x - \theta), |x - \theta| : \theta \in \mathbf{R} \}$ to conclude from Lemma 19.24 that as $n \to \infty$

$$\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(|X_j - \tilde{m}| - (E|X_1 - \theta|)_{\theta = \tilde{m}} - |X_j - m_0| + E|X_1 - m_0| \right) \xrightarrow{P} 0$$

Also, near m_0 we know (from p.55) that $E|X_1 - \theta| - E|X_1| = 2\int_0^{\theta} F(x)dx - \theta$, which implies that

$$\sqrt{n}\left(E|X_i-\theta|_{\theta=\tilde{m}} - E|X_1-m_0|\right) \stackrel{\mathcal{D}}{\approx} \sqrt{n}\left(\tilde{m}-m_0\right)\left(2F(m_0)-1\right) = 0$$

Therefore

$$\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(|X_j - \tilde{m}| - |X_j - m_0| \right) \xrightarrow{P} 0$$

which implies

$$\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(|X_j - \tilde{m}| - E|X_1 - m_0| \right) \stackrel{\mathcal{D}}{\approx} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left(|X_j - m_0| - E|X_1 - m_0| \right)$$

which converges in distribution by the usual CLT to $\mathcal{N}(0, \operatorname{Var}(|X_1 - m_0|))$.