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#19.3. Z(t) is a standard Brownian motion, which implies that for 0 <t <1,
Z(t)—tZ(1) =Y (t) is a process Gaussian finite dimensional distributions with
mean-0 and covariances for 0 < s <t <1 given by Cov(Y(s),Y(t)) =

Cov(Z(s), Z(t)) —sCov(Z(1),Z(t)) —t Cov(Z(s), Z(1)) + st Var(Z(1))

which is = s — st — st + st = (s(1 — t), the covariance of Brownian bridge.
Since finite dimensional distributions uniquely determine the law of the process
on [*°[0,1] or C[0,1], we are done.

#19.4. Here F,,, G, are empirical distribution functions, and via the classical
Donsker Theorem, as m,n — oo,

Vi (Fp—F) 2 W°oF | Vm(Gn—G) 2 W°oG  in I®(R)
From now on, assume that as m, n — oo, also mlm — A€ (0,1).

(i) Then by the Continuous Mapping Theorem, or simply independence of
the two empirical processes (for X observations and Y observations respec-
tively), under Hp: F =G,

VIR (Fn()=Gn() 2 o weor — — 2 _wooc 2 — L jpoop
" " Vil Vi—a ? YTE=D))
where W7, Wg, W¢ are Brownian bridge processes, the first two of which are
independent. Thus under the null hypothesis the Continuous Mapping Theorem
implies
1
VAR K = sup [Vm+n (Fn(t) — Ga(t)] 5 i e
t — s

as long as F' = (G is continuous.

(ii). By the argument given in (i), for general fixed F # G,

p 1 1
vm+n(Fp()—Gu()—F+G) > —=W{oF — ——WJoG

in I*°(R) as m,n — oco. Take cy/m+n equal to the 1 — a quantile of the
(continuously distributed) random variable sup, |[W°(t)|/1/A(1 — ), and for
arbitrarily small fixed € > 0, take n+/m +n to bethe 1 —e quantile of the
same r.v. It follows that under probabilities with any fixed F # G,

P(Kppn>c) > P(Wm+n|Fn—Gp—F+Gl|lew <n, Vm+n||F—Glx > n—c)

which converges to 1 —€ as m,n — oco. Since € was arbitrary, this shows the
test based upon K, , is consistent against all fixed alternatives.



(iii) Assume Fy = Go, F' = Fy; m, G = G}/ 5. 1t is then easy to check
by differentiability of the d.f. families with respect to the scalar parameter 6,
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from which power can readily be calculated (although not in closed form).

Vm+n (Fn(:) = Ga()

#19.5. Now F={f:[0,1] —[0,1] : Yz, y, |f(z)— fly) <|z—vy|}. Fix
€ >0 and points ¢; =min(ie/2, 1) for i =0,1,..., [2/¢] +1. Bracket every
f € F (with gap € in uniform norm) by functions

[2/€]+1

hr- = Z Iiics2, (iv1)e/2) i s hy. = min(hz , +¢€, 1)
=0

where the vector 7 defining these bracketing functions for f has components
7; defined = max{t; : t; < f(¢;)}. Moreover, since such 7, = ¢; must
have 7,41 equal to one of t;_1, ¢, t;41, we can count that the number of such
bracketing intervals is < (3/¢) - 3%/<.

#19.6. (i) Here C = {(a,b] : —o0 < a < b < oco}. Such intervals obviously
pick out individual points from among 2 but cannot separate the middle of 3
ordered points on the line. Therefore VC(C) > 2 but < 3 and therefore is
equal to 3.

(ii) Now C = {(—o0,a1] x (=00, as] : a1,as € R} C R%. Again, obviously
VC(C) > 2 since C picks out all subsets of two points (a1, az), (b1,be) which
satisfy a; < by, as > bs. Now consider sets of three points a, b, ¢ in the
plane, and without loss of generality let ¢; < max(a1,b;) and ¢y < max(ag,bs).
Then any set C € C containing a, b necessarily contains ¢ also. Therefore

ve(e) = 3.

(iii) Now fix a monotonic function v, with C equal to the set of subgraphs
for functions (- — @) as 6 ranges over the whole real line. Obviously
VC(C) = 2, since for any two points (z;,t;), the point with smaller value of
¥(x;) —t; is necessarily contained in any subgraph which contains the larger
value o(x;) —t;.

#19.7. Let F be VC, i.e. the collection of sets {(z,t): f(z) >t} with f
ranging over all of F, is VC.

(i) {z1,...,zn} isshattered by {f > 0}scr whenever {(z1,0),..., (,,0)}
is shattered by JF-subgraphs, denoted SG .

(ii) Now fix a function g, and consider whether G = {{(x,t) : f@)+g(x) >
th:fe f} shatters {(x1,t1),...,(zn,tn)} = Sn. Note

{(wi ts,), E=1,...,r} = {(xi,t;) € Sn: flai) > ti —g(xs)}



which says that these indices iy are those ¢ for which f(z;) > t; — g(=z;).
Hence G shatters S,, if and only if SGx shatters {(z;, t; — g(x;))}. Thus
the VC indices of G and SG £ are the same !

(iii) The argument and result are similar to that in (ii) except that now,
since we consider second coordinates ¢;/g(z;), we must consider separately
points z; with g(z;) <0, =0, and > 0. It is easy to argue that within any
set of 3n —2 points (x;,t;) there must be at least n satisfying one of the
conditions g(x;) < 0,=0, or > 0. Then if n =VC(SGx), at least one of
the three sets {(x;, %) : g(x;) <0, f(z); < t;/g(x;)} or {(xit;): g(z;) >
0, f(z); > ti/g(z;)}, or {(=i,t;): g(xz;) =0 > t;} fails to be shattered by
subgraphs in SGx.

#19.10. Now 7 = med(X7,...,X,,) isanearrootof > . | sgn(X;—6). We
are asked for the asymptotic distribution of n~=! " | |X; —m|. We assume
the distribution of X; is continuous, with unique median mg. (That is, mg
is a point of left and right increase for the d.f. F of Xj;.)

First use the Donsker property of F = {sgn(z —6), |[x—60] : 6§ € R} to
conclude from Lemma 19.24 that as n — oo

1 & 5 P
DD (1 =l = (BIX1 = 0o — 1X; = mo| + E|X1 = mol) = 0
j=1

Also, near mo we know (from p.55) that E|X;—60|—E|X;| = 2f06 F(x)dx—0,
which implies that

vn (E|X,» Ol — E|X1 — mo\) R Vi (i —mo) (2F(me) —1) = 0

Therefore .
(1% =l = 1%, = mol) = 0
=1
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which implies
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which converges in distribution by the usual CLT to N (O, Var(| X7 — mo‘)).



