Solutions to Stat 710 Problem Set 2

\#19.3. $Z(t)$ is a standard Brownian motion, which implies that for $0 \leq t \leq 1$, $Z(t)-t Z(1) \equiv Y(t)$ is a process Gaussian finite dimensional distributions with mean-0 and covariances for $0 \leq s \leq t \leq 1$ given by $\operatorname{Cov}(Y(s), Y(t))=$

$$
\operatorname{Cov}(Z(s), Z(t))-s \operatorname{Cov}(Z(1), Z(t))-t \operatorname{Cov}(Z(s), Z(1))+s t \operatorname{Var}(Z(1))
$$

which is $=s-s t-s t+s t=(s(1-t)$, the covariance of Brownian bridge. Since finite dimensional distributions uniquely determine the law of the process on $l^{\infty}[0,1]$ or $\mathcal{C}[0,1]$, we are done.
\#19.4. Here F_{m}, G_{n} are empirical distribution functions, and via the classical Donsker Theorem, as $m, n \rightarrow \infty$,

$$
\sqrt{m}\left(F_{m}-F\right) \xrightarrow{\mathcal{D}} W^{o} \circ F \quad, \quad \sqrt{m}\left(G_{n}-G\right) \xrightarrow{\mathcal{D}} W^{o} \circ G \quad \text { in } l^{\infty}(\mathbf{R})
$$

From now on, assume that as $m, n \rightarrow \infty$, also $\frac{m}{m+n} \rightarrow \lambda \in(0,1)$.
(i) Then by the Continuous Mapping Theorem, or simply independence of the two empirical processes (for X observations and Y observations respectively, under $H_{0}: F=G$,
$\sqrt{m+n}\left(F_{m}(\cdot)-G_{n}(\cdot)\right) \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda}} W_{1}^{o} \circ F-\frac{1}{\sqrt{1-\lambda}} W_{2}^{o} \circ G \stackrel{\mathcal{D}}{=} \frac{1}{\sqrt{\lambda(1-\lambda)}} W^{o} \circ F$
where $W_{1}^{o}, W_{2}^{o}, W^{o}$ are Brownian bridge processes, the first two of which are independent. Thus under the null hypothesis the Continuous Mapping Theorem implies

$$
\sqrt{m+n} K_{m, n} \equiv \sup _{t} \left\lvert\, \sqrt{m+n}\left(\left.F_{m}(t)-G_{n}(t)\left|\xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda(1-\lambda)}} \sup _{s}\right| W^{o}(s) \right\rvert\,\right.\right.
$$

as long as $F=G$ is continuous.
(ii). By the argument given in (i), for general fixed $F \neq G$,

$$
\sqrt{m+n}\left(F_{m}(\cdot)-G_{n}(\cdot)-F+G\right) \xrightarrow{\mathcal{D}} \frac{1}{\sqrt{\lambda}} W_{1}^{o} \circ F-\frac{1}{\sqrt{1-\lambda}} W_{2}^{o} \circ G
$$

in $l^{\infty}(\mathbf{R})$ as $m, n \rightarrow \infty$. Take $c \sqrt{m+n}$ equal to the $1-\alpha$ quantile of the (continuously distributed) random variable $\sup _{t}\left|W^{o}(t)\right| / \sqrt{\lambda(1-\lambda)}$, and for arbitrarily small fixed $\epsilon>0$, take $\eta \sqrt{m+n}$ to be the $1-\epsilon$ quantile of the same r.v. It follows that under probabilities with any fixed $F \neq G$,
$P\left(K_{m, n}>c\right) \geq P\left(\sqrt{m+n}\left\|F_{m}-G_{n}-F+G\right\|_{\infty} \leq \eta, \sqrt{m+n}\|F-G\|_{\infty}>\eta-c\right)$
which converges to $1-\epsilon$ as $m, n \rightarrow \infty$. Since ϵ was arbitrary, this shows the test based upon $K_{m, n}$ is consistent against all fixed alternatives.
(iii) Assume $F_{0}=G_{0}, F=F_{g / \sqrt{m}}, G=G_{h / \sqrt{n}}$. It is then easy to check by differentiability of the d.f. families with respect to the scalar parameter θ,

$$
\sqrt{m+n}\left(F_{m}(\cdot)-G_{n}(\cdot)\right) \stackrel{\mathcal{D}}{\approx} \frac{1}{\sqrt{\lambda(1-\lambda)}} W^{o}+\frac{g}{\sqrt{\lambda}} F_{0}^{\prime}-\frac{h}{\sqrt{1-\lambda}} G_{0}^{\prime}
$$

from which power can readily be calculated (although not in closed form).
\#19.5. Now $\mathcal{F}=\{f:[0,1] \rightarrow[0,1]: \forall x, y,|f(x)-f(y)| \leq|x-y|\}$. Fix $\epsilon>0$ and points $t_{i}=\min (i \epsilon / 2,1)$ for $i=0,1, \ldots,[2 / \epsilon]+1$. Bracket every $f \in \mathcal{F}$ (with gap ϵ in uniform norm) by functions

$$
h_{L, \tau} \equiv \sum_{i=0}^{[2 / \epsilon]+1} I_{[i \epsilon / 2,(i+1) \epsilon / 2)} \tau_{i} \quad, \quad h_{U, \tau} \equiv \min \left(h_{L, \tau}+\epsilon, 1\right)
$$

where the vector τ defining these bracketing functions for f has components τ_{i} defined $=\max \left\{t_{j}: t_{j} \leq f\left(t_{i}\right)\right\}$. Moreover, since such $\tau_{i}=t_{j}$ must have τ_{i+1} equal to one of t_{j-1}, t_{j}, t_{j+1}, we can count that the number of such bracketing intervals is $\leq(3 / \epsilon) \cdot 3^{3 / \epsilon}$.
\#19.6. (i) Here $\mathcal{C}=\{(a, b]:-\infty<a \leq b<\infty\}$. Such intervals obviously pick out individual points from among 2 but cannot separate the middle of 3 ordered points on the line. Therefore $V C(\mathcal{C})>2$ but ≤ 3 and therefore is equal to 3 .
(ii) Now $\mathcal{C}=\left\{\left(-\infty, a_{1}\right] \times\left(-\infty, a_{2}\right]: a_{1}, a_{2} \in \mathbf{R}\right\} \subset \mathbf{R}^{2}$. Again, obviously $V C(\mathcal{C})>2$ since \mathcal{C} picks out all subsets of two points $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ which satisfy $a_{1}<b_{1}, a_{2}>b_{2}$. Now consider sets of three points $\underline{a}, \underline{b}, \underline{c}$ in the plane, and without loss of generality let $c_{1} \leq \max \left(a_{1}, b_{1}\right)$ and $c_{2} \leq \max \left(a_{2}, b_{2}\right)$. Then any set $C \in \mathcal{C}$ containing $\underline{a}, \underline{b}$ necessarily contains \underline{c} also. Therefore $V C(\mathcal{C})=3$.
(iii) Now fix a monotonic function ψ, with \mathcal{C} equal to the set of subgraphs for functions $\psi(\cdot-\theta)$ as θ ranges over the whole real line. Obviously $V C(\mathcal{C})=2$, since for any two points $\left(x_{i}, t_{i}\right)$, the point with smaller value of $\psi\left(x_{i}\right)-t_{i}$ is necessarily contained in any subgraph which contains the larger value $\psi\left(x_{i}\right)-t_{i}$.
\#19.7. Let \mathcal{F} be VC, i.e. the collection of sets $\{(x, t): f(x)>t\}$ with f ranging over all of \mathcal{F}, is VC .
(i) $\left\{x_{1}, \ldots, x_{n}\right\}$ is shattered by $\{f>0\}_{f \in \mathcal{F}}$ whenever $\left\{\left(x_{1}, 0\right), \ldots,\left(x_{n}, 0\right)\right\}$ is shattered by \mathcal{F}-subgraphs, denoted $S G_{\mathcal{F}}$.
(ii) Now fix a function g, and consider whether $\mathcal{G}=\{\{(x, t): f(x)+g(x)>$ $t\}: f \in \mathcal{F}\}$ shatters $\left\{\left(x_{1}, t_{1}\right), \ldots,\left(x_{n}, t_{n}\right)\right\}=S_{n}$. Note

$$
\left\{\left(x_{i_{k}}, t_{i_{k}}\right), k=1, \ldots, r\right\}=\left\{\left(x_{i}, t_{i}\right) \in S_{n}: f\left(x_{i}\right)>t_{i}-g\left(x_{i}\right)\right\}
$$

which says that these indices i_{k} are those i for which $f\left(x_{i}\right)>t_{i}-g\left(x_{i}\right)$. Hence \mathcal{G} shatters S_{n} if and only if $S G_{\mathcal{F}}$ shatters $\left\{\left(x_{i}, t_{i}-g\left(x_{i}\right)\right)\right\}$. Thus the VC indices of \mathcal{G} and $S G_{\mathcal{F}}$ are the same!
(iii) The argument and result are similar to that in (ii) except that now, since we consider second coordinates $t_{i} / g\left(x_{i}\right)$, we must consider separately points x_{i} with $g\left(x_{i}\right)<0,=0$, and >0. It is easy to argue that within any set of $3 n-2$ points $\left(x_{i}, t_{i}\right)$ there must be at least n satisfying one of the conditions $g\left(x_{i}\right)<0,=0$, or >0. Then if $n=V C\left(S G_{\mathcal{F}}\right)$, at least one of the three sets $\left\{\left(x_{i}, t_{i}\right): g\left(x_{i}\right)<0, f(x)_{i}<t_{i} / g\left(x_{i}\right)\right\}$ or $\left\{\left(x_{i}, t_{i}\right): g\left(x_{i}\right)>\right.$ $\left.0, f(x)_{i}>t_{i} / g\left(x_{i}\right)\right\}$, or $\left\{\left(x_{i}, t_{i}\right): g\left(x_{i}\right)=0>t_{i}\right\}$ fails to be shattered by subgraphs in $S G_{\mathcal{F}}$.
\#19.10. Now $\tilde{m}=\operatorname{med}\left(X_{1}, \ldots, X_{n}\right)$ is a near root of $\sum_{i=1}^{n} \operatorname{sgn}\left(X_{i}-\theta\right)$. We are asked for the asymptotic distribution of $n^{-1} \sum_{i=1}^{n}\left|X_{j}-\tilde{m}\right|$. We assume the distribution of X_{i} is continuous, with unique median m_{0}. (That is, m_{0} is a point of left and right increase for the d.f. F of X_{i}.)

First use the Donsker property of $\mathcal{F}=\{\operatorname{sgn}(x-\theta),|x-\theta|: \theta \in \mathbf{R}\}$ to conclude from Lemma 19.24 that as $n \rightarrow \infty$

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left(\left|X_{j}-\tilde{m}\right|-\left(E\left|X_{1}-\theta\right|\right)_{\theta=\tilde{m}}-\left|X_{j}-m_{0}\right|+E\left|X_{1}-m_{0}\right|\right) \xrightarrow{P} 0
$$

Also, near m_{0} we know (from p.55) that $E\left|X_{1}-\theta\right|-E\left|X_{1}\right|=2 \int_{0}^{\theta} F(x) d x-\theta$, which implies that

$$
\sqrt{n}\left(E\left|X_{i}-\theta\right|_{\theta=\tilde{m}}-E\left|X_{1}-m_{0}\right|\right) \stackrel{\mathcal{D}}{\approx} \sqrt{n}\left(\tilde{m}-m_{0}\right)\left(2 F\left(m_{0}\right)-1\right)=0
$$

Therefore

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left(\left|X_{j}-\tilde{m}\right|-\left|X_{j}-m_{0}\right|\right) \xrightarrow{P} 0
$$

which implies

$$
\frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left(\left|X_{j}-\tilde{m}\right|-E\left|X_{1}-m_{0}\right|\right) \stackrel{\mathcal{D}}{\approx} \frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left(\left|X_{j}-m_{0}\right|-E\left|X_{1}-m_{0}\right|\right)
$$

which converges in distribution by the usual CLT to $\mathcal{N}\left(0, \operatorname{Var}\left(\left|X_{1}-m_{0}\right|\right)\right)$.

