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Solutions to Problem Set 3

Ch. 5 #15. (X,,Y;) is #d with joint distribution given by Y; = fg,(X;)+e;.
Least squares says o = argming n~* Y7, (V; — f5(X;))%.  What we are
minimizing is asymptotically E(Y; — fg(X1))?, so if this min is unique then
it is given (subject to regularity conditions) as the solution to 0 =

Vo BYi—fs(X0) = =2 [ Vofo(a) {E(e]X: = ) + fa(2) = fole)} fx(x) da

If uniqueness holds (eg via a 2nd derivative condition) and E(e|X = x) =0,
then the condition for solution is met (and thus met uniquely) when o, =
Jo. But E(e) = 0 is not necessarily enough to make this work, even
under regularity conditions! This says that the closest function fy(X;) to
f9,(X1) + E(e1|X;) may not be the one with ¥ = ¢y. For example, take
fo(X1) = ¥X; and suppose FE(e;|X;) = X;. Then least-squares would
give estimators converging not to 1y but to ¥y + 1, and in this example
can have F(X;) = 0, which means that also FE(e;) = 0. The important
property (for consistency) is not expectation 0, but conditional expectation
identically equal to 0.

#20. In this problem, there is a function @.Z.)Ig (x) applying to individual -
coordinates, as well as a function ¥ (9) =n | ¥y (X;) applying to the
whole data-sample, and these must be distinguished because the domination-
assumption by M applies directly only to the first one ! We are assuming
that J - ¥y and that there exist M, § such that | ¢, (z) < M(z)
for all # and ¢ such that |0 — 0y < . Then P(|0 — 9| > 6) — 0
and n~' 30, M(X;) L EM(X,) < oo implies P(|n T, M(X)| >
2EM (X)) — 0, and for all € > 0,

—1 n

€

(|19 Yol | — Z wﬁ )| =€) < P(]l? Yo| > max(0, m)

+

P(|0 — 9y < 6, |7 ZM )| >2EM(X;)) — 0
which implies (9 — o) 5= (9 —do)n~" 7, 5 (X;) = op(1).
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Ch. 6 #1. First, (dQ,/dP,)(X) = exp(u,X — p2/2), where X = Z ~
N(0,1) under P, and X —p, = Z ~N(0,1) under @Q,. This likelihood-
ratio sequence is convergent in distribution along subsequences whether or
not u, is bounded, since it degenerates to 0 if pu, — +oo. Now by
LeCam’s First Lemma, we have mutual contiguity of P,, @, iff for all
subsequences of n along which pu, converges to a finite or infinite limit,
with Z ~ N(0,1), exp(unZ — p2) = U with P(U >0) =1, B(U) =1,
i.e., pn 7 +oo. Thus the criterion is that sup,, |u,| < oo.

#2. Now P, ~ N(0,1/n), Qn ~ N(9,,1/n), and (dQ,/dP,)(T) =
exp(nTV, — nv?/2). Letting Z = Ty/n ~ N(0,1) under P,, we find
again as in #1, via LeCam’s First Lemma, that mutual contiguity holds iff
for all sequences of n along which exp(d,Zy/n — nd?/2) 2, U, also
U>0 and EU =1, so that u, = +/n¥, = Op(1), as asserted. A student
in the class points out that in general, if for measures P,, ), there is a
one-to-one transformation g, such that P* = P,og- ', Qf = Q,09.!

are mutually absolutely contiguous, then the same holds for P,, Q.. In this
problem, g,(x) = \/nx, and the measures P*, Qf are exactly the same
as the measures Py, Q, in #0.1. (The general assertion holds because, if
B, are events with P,(B,) — 0, then A, = {g.(z):x € B,} satisfies
P*(A,) — 0 which by contiguity implies Q,(B,) = Q5(A,) — 0. The
proof works the same way for the other direction of contiguity.)

#4. Suppose ||P, — Q.|| — 0. Then VA,, P(A,) — 0 implies

and similarly P(A4,) < ||P, — Qu| + Q(A,) — 0 if Q(A,) — 0. Thus

convergence of variation distance to 0 implies mutual contiguity.

#6. The simplest example is P, = P equal to twice Lebesgue measure on
[0,1/2] and @, =@ Lebesgue on [0, 1].



