## Solutions to Problem Set 3

Ch. 5 \#15. $\quad\left(X_{i}, Y_{i}\right)$ is iid with joint distribution given by $Y_{i}=f_{\vartheta_{0}}\left(X_{i}\right)+e_{i}$. Least squares says $\hat{\vartheta} \equiv \operatorname{argmin}_{\vartheta} n^{-1} \sum_{i=1}^{n}\left(Y_{i}-f_{\vartheta}\left(X_{i}\right)\right)^{2}$. What we are minimizing is asymptotically $E\left(Y_{1}-f_{\vartheta}\left(X_{1}\right)\right)^{2}$, so if this min is unique then it is given (subject to regularity conditions) as the solution to $0=$
$\nabla_{\vartheta} E\left(Y_{1}-f_{\vartheta}\left(X_{1}\right)\right)^{2}=-2 \int \nabla_{\vartheta} f_{\vartheta}(x)\left\{E\left(e_{1} \mid X_{1}=x\right)+f_{\vartheta_{0}}(x)-f_{\vartheta}(x)\right\} f_{X}(x) d x$
If uniqueness holds (eg via a 2nd derivative condition) and $E(e \mid X=x)=0$, then the condition for solution is met (and thus met uniquely) when $\vartheta_{*}=$ $\vartheta_{0}$. But $E(e)=0$ is not necessarily enough to make this work, even under regularity conditions! This says that the closest function $f_{\vartheta}\left(X_{1}\right)$ to $f_{\vartheta_{0}}\left(X_{1}\right)+E\left(e_{1} \mid X_{1}\right)$ may not be the one with $\vartheta=\vartheta_{0}$. For example, take $f_{\vartheta}\left(X_{1}\right)=\vartheta X_{1}$ and suppose $E\left(e_{1} \mid X_{1}\right)=X_{1}$. Then least-squares would give estimators converging not to $\vartheta_{0}$ but to $\vartheta_{0}+1$, and in this example can have $E\left(X_{1}\right)=0$, which means that also $E\left(e_{1}\right)=0$. The important property (for consistency) is not expectation 0 , but conditional expectation identically equal to 0 .
\#20. In this problem, there is a function $\ddot{\psi}_{\vartheta}(x)$ applying to individual $x$ coordinates, as well as a function $\ddot{\Psi}(\vartheta)=n^{-1} \sum_{i=1}^{n} \ddot{\psi}_{\vartheta}\left(X_{i}\right)$ applying to the whole data-sample, and these must be distinguished, because the dominationassumption by $M$ applies directly only to the first one! We are assuming that $\tilde{\vartheta} \xrightarrow{P} \vartheta_{0}$ and that there exist $M, \delta$ such that $\left|\ddot{\psi}_{\vartheta}(x)\right| \leq M(x)$ for all $x$ and $\vartheta$ such that $\left|\vartheta-\vartheta_{0}\right|<\delta$. Then $P\left(\left|\tilde{\vartheta}-\vartheta_{0}\right| \geq \delta\right) \rightarrow 0$ and $n^{-1} \sum_{i=1}^{n} M\left(X_{i}\right) \xrightarrow{P} E M\left(X_{1}\right)<\infty$ implies $P\left(\left|n^{-1} \sum_{i=1}^{n} M\left(X_{i}\right)\right| \geq\right.$ $\left.2 E M\left(X_{1}\right)\right) \longrightarrow 0$, and for all $\epsilon>0$,

$$
\begin{aligned}
& P\left(\left|\tilde{\vartheta}-\vartheta_{0}\right|\left|\frac{1}{n} \sum_{i=1}^{n} \psi_{\tilde{\vartheta}}\left(X_{i}\right)\right| \geq \epsilon\right) \leq P\left(\left|\tilde{\vartheta}-\vartheta_{0}\right| \geq \max \left(\delta, \frac{\epsilon}{2 E M\left(X_{1}\right)}\right)+\right. \\
& \quad+P\left(\left|\tilde{\vartheta}-\vartheta_{0}<\delta,\left|\frac{1}{n} \sum_{i=1}^{n} M\left(X_{i}\right)\right| \geq 2 E M\left(X_{1}\right)\right) \longrightarrow 0\right.
\end{aligned}
$$

which implies $\left(\tilde{\vartheta}-\vartheta_{0}\right) \ddot{\Psi}_{\tilde{\vartheta}}=\left(\tilde{\vartheta}-\vartheta_{0}\right) n^{-1} \sum_{i=1}^{n} \ddot{\psi}_{\tilde{\vartheta}}\left(X_{i}\right)=o_{P}(1)$.

Ch. $6 \# 1$. First, $\left(d Q_{n} / d P_{n}\right)(X)=\exp \left(\mu_{n} X-\mu_{n}^{2} / 2\right)$, where $X \equiv Z \sim$ $\mathcal{N}(0,1)$ under $P_{n}$ and $X-\mu_{n} \equiv Z \sim \mathcal{N}(0,1)$ under $Q_{n}$. This likelihoodratio sequence is convergent in distribution along subsequences whether or not $\mu_{n}$ is bounded, since it degenerates to 0 if $\mu_{n} \rightarrow \pm \infty$. Now by LeCam's First Lemma, we have mutual contiguity of $P_{n}, Q_{n}$ iff for all subsequences of $n$ along which $\mu_{n}$ converges to a finite or infinite limit, with $Z \sim \mathcal{N}(0,1), \quad \exp \left(\mu_{n} Z-\mu_{n}^{2}\right) \xrightarrow{\mathcal{D}} U$ with $P(U>0)=1, E(U)=1$, i.e., $\mu_{n} \nrightarrow \pm \infty$. Thus the criterion is that $\sup _{n}\left|\mu_{n}\right|<\infty$.
\#2. Now $P_{n} \sim \mathcal{N}(0,1 / n), Q_{n} \sim \mathcal{N}\left(\vartheta_{n}, 1 / n\right)$, and $\left(d Q_{n} / d P_{n}\right)(T)=$ $\exp \left(n T \vartheta_{n}-n \vartheta_{n}^{2} / 2\right)$. Letting $Z \equiv T \sqrt{n} \sim \mathcal{N}(0,1)$ under $P_{n}$, we find again as in \#1, via LeCam's First Lemma, that mutual contiguity holds iff for all sequences of $n$ along which $\exp \left(\vartheta_{n} Z \sqrt{n}-n \vartheta_{n}^{2} / 2\right) \xrightarrow{\mathcal{D}} U$, also $U>0$ and $E U=1$, so that $\mu_{n}=\sqrt{n} \vartheta_{n}=\mathcal{O}_{P}(1)$, as asserted. A student in the class points out that in general, if for measures $P_{n}, Q_{n}$ there is a one-to-one transformation $g_{n}$ such that $P_{n}^{*} \equiv P_{n} \circ g_{n}^{-1}, Q_{n}^{*} \equiv Q_{n} \circ g_{n}^{-1}$ are mutually absolutely contiguous, then the same holds for $P_{n}, Q_{n}$. In this problem, $g_{n}(x)=\sqrt{n} x$, and the measures $P_{n}^{*}, Q_{n}^{*}$ are exactly the same as the measures $P_{n}, Q_{n}$ in $\# 6.1$. (The general assertion holds because, if $B_{n}$ are events with $P_{n}\left(B_{n}\right) \rightarrow 0$, then $A_{n}=\left\{g_{n}(x): x \in B_{n}\right\}$ satisfies $P_{n}^{*}\left(A_{n}\right) \rightarrow 0$ which by contiguity implies $Q_{n}\left(B_{n}\right)=Q_{n}^{*}\left(A_{n}\right) \rightarrow 0$. The proof works the same way for the other direction of contiguity.)
\#4. Suppose $\left\|P_{n}-Q_{n}\right\| \rightarrow 0$. Then $\forall A_{n}, \quad P\left(A_{n}\right) \rightarrow 0$ implies

$$
Q\left(A_{n}\right) \leq\left|Q\left(A_{n}\right)-P\left(A_{n}\right)\right|+P\left(A_{n}\right) \leq\left\|P_{n}-Q_{n}\right\|+P\left(A_{n}\right) \rightarrow 0
$$

and similarly $P\left(A_{n}\right) \leq\left\|P_{n}-Q_{n}\right\|+Q\left(A_{n}\right) \rightarrow 0$ if $Q\left(A_{n}\right) \rightarrow 0$. Thus convergence of variation distance to 0 implies mutual contiguity.
$\# 6$. The simplest example is $P_{n} \equiv P$ equal to twice Lebesgue measure on $[0,1 / 2]$ and $Q_{n} \equiv Q$ Lebesgue on $[0,1]$.

