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Solutions to Problem Set 3

Ch. 5 #15. (Xi, Yi) is iid with joint distribution given by Yi = fϑ0
(Xi)+ei.

Least squares says ϑ̂ ≡ argminϑ n−1
∑n

i=1
(Yi − fϑ(Xi))

2. What we are
minimizing is asymptotically E(Y1− fϑ(X1))

2, so if this min is unique then
it is given (subject to regularity conditions) as the solution to 0 =

∇ϑE(Y1−fϑ(X1))
2 = −2

∫
∇ϑfϑ(x) {E(e1|X1 = x) + fϑ0

(x)− fϑ(x)} fX(x) dx

If uniqueness holds (eg via a 2nd derivative condition) and E(e|X = x) = 0,
then the condition for solution is met (and thus met uniquely) when ϑ∗ =
ϑ0. But E(e) = 0 is not necessarily enough to make this work, even
under regularity conditions! This says that the closest function fϑ(X1) to
fϑ0

(X1) + E(e1|X1) may not be the one with ϑ = ϑ0. For example, take
fϑ(X1) = ϑX1 and suppose E(e1|X1) = X1. Then least-squares would
give estimators converging not to ϑ0 but to ϑ0 + 1, and in this example
can have E(X1) = 0, which means that also E(e1) = 0. The important
property (for consistency) is not expectation 0, but conditional expectation
identically equal to 0.

#20. In this problem, there is a function
..

ψϑ (x) applying to individual x-

coordinates, as well as a function
..

Ψ (ϑ) = n−1
∑n

i=1

..

ψϑ (Xi) applying to the
whole data-sample, and these must be distinguished, because the domination-
assumption by M applies directly only to the first one ! We are assuming

that ϑ̃
P−→ ϑ0 and that there exist M, δ such that |

..

ψϑ (x)| ≤ M(x)
for all x and ϑ such that |ϑ − ϑ0| < δ. Then P (|ϑ̃ − ϑ0| ≥ δ) → 0

and n−1
∑n

i=1
M(Xi)

P−→ EM(X1) < ∞ implies P (|n−1
∑n

i=1
M(Xi)| ≥

2EM(X1)) −→ 0, and for all ε > 0,

P (|ϑ̃− ϑ0| |
1

n

n∑
i=1

ψ..
ϑ̃
(Xi)| ≥ ε) ≤ P (|ϑ̃− ϑ0| ≥ max(δ,

ε

2EM(X1)
)+

+ P (|ϑ̃− ϑ0 < δ, | 1
n

n∑
i=1

M(Xi)| ≥ 2EM(X1)) −→ 0

which implies (ϑ̃− ϑ0)
..

Ψϑ̃ = (ϑ̃− ϑ0)n
−1

∑n
i=1

..

ψϑ̃ (Xi) = oP (1).
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Ch. 6 #1. First, (dQn/dPn)(X) = exp(µnX − µ2

n/2), where X ≡ Z ∼
N (0, 1) under Pn and X−µn ≡ Z ∼ N (0, 1) under Qn. This likelihood-
ratio sequence is convergent in distribution along subsequences whether or
not µn is bounded, since it degenerates to 0 if µn → ±∞. Now by
LeCam’s First Lemma, we have mutual contiguity of Pn, Qn iff for all
subsequences of n along which µn converges to a finite or infinite limit,

with Z ∼ N (0, 1), exp(µnZ − µ2

n)
D−→ U with P (U > 0) = 1, E(U) = 1,

i.e., µn 6→ ±∞. Thus the criterion is that supn |µn| <∞.

#2. Now Pn ∼ N (0, 1/n), Qn ∼ N (ϑn, 1/n), and (dQn/dPn)(T ) =
exp(nTϑn − nϑ2

n/2). Letting Z ≡ T
√
n ∼ N (0, 1) under Pn, we find

again as in #1, via LeCam’s First Lemma, that mutual contiguity holds iff

for all sequences of n along which exp(ϑnZ
√
n − nϑ2

n/2)
D−→ U , also

U > 0 and EU = 1, so that µn =
√
nϑn = OP (1), as asserted. A student

in the class points out that in general, if for measures Pn, Qn there is a

one-to-one transformation gn such that P ∗

n ≡ Pn ◦ g−1

n , Q∗

n ≡ Qn ◦ g−1

n

are mutually absolutely contiguous, then the same holds for Pn, Qn. In this

problem, gn(x) =
√
nx, and the measures P ∗

n , Q
∗

n are exactly the same

as the measures Pn, Qn in #6.1. (The general assertion holds because, if
Bn are events with Pn(Bn) → 0, then An = {gn(x) : x ∈ Bn} satisfies
P ∗

n(An) → 0 which by contiguity implies Qn(Bn) = Q∗

n(An) → 0. The
proof works the same way for the other direction of contiguity.)

#4. Suppose ‖Pn −Qn‖ → 0. Then ∀An, P (An)→ 0 implies

Q(An) ≤ |Q(An)− P (An)|+ P (An) ≤ ‖Pn −Qn‖+ P (An)→ 0

and similarly P (An) ≤ ‖Pn − Qn‖ + Q(An) → 0 if Q(An) → 0. Thus
convergence of variation distance to 0 implies mutual contiguity.

#6. The simplest example is Pn ≡ P equal to twice Lebesgue measure on
[0, 1/2] and Qn ≡ Q Lebesgue on [0, 1].
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