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Solutions to Selected Problems, HW 5

Ch. 11, #4. The key point in this problem is to use only the projection
definition, with suitable limiting operations, to obtain the usual definition.
It is a backward approach:

(i) Since E(X∧M |Y ) is a projection, it satisfies for all square-integrable
functions h(Y ),

E
(

(X ∧M − E(X ∧M |Y )h(Y )
)

= 0

First we check the monotonicity in problem #3: if U ≥ V a.s., then
E(U |Y ) ≥ E(V |Y ) a.s, because for the square-integrable nonnegative func-
tion h(Y ) = I[E(U |Y )<E(V |Y )], E

(

(E(U |Y ) − E(Y |Y ))h(Y )
)

= E((U −
V )h(Y )) ≥ 0. From this monotonicity, it follows that E(X ∧M |Y ) is an
increasing function of M , and therefore has an a.s. limit Z, finite or infi-
nite, which must in fact be finite if EX <∞, by the motonone convergence
theorem, since E(E(X ∧M |Y )) ≤ E(X) <∞.
(ii) If X is square-integrable, then E(X ∧M |Y )↗ Z, and by Fatou’s

Lemma, EZ2 ≤ lim infM E(E(X ∧M |Y )2) ≤ E(X2) <∞, and
E((X − Z)h(Y )) = lim

M
E((X ∧M − Z)h(Y )) = 0

which implies that Z coincides with the usual definition of E(X|Y ) as a
projection.

(iii) We know E(X ∧M |Y ) ↗ Z ≡ E(X|Y ). But if EX < ∞, then
(again by Fatou) EZ <∞ and by dominated convergence E|E(X∧M |Y )−
Z| → 0, so 0 = E((X ∧M − E(X ∧M |Y ))g(Y )→ E((X − Z)g(Y )).

(iv) A.s. uniqueness follows when EX <∞, since if Z∗ were another
positive integrable function of Y satisfying the projection identity, then by
choosing the general integrable function g(Y ) = sgn(Z − Z∗), we obtain
E((Z − Z∗) sgn(Z − Z∗)) = 0

Finally, E(X|Y ) = E(X+ |Y )− E(X− |Y ) for general integrable X.

Ch. 12, #8. In this problem, the difficulty is that the ‘kernel’ hij(x, y) =
I[i<j, x<y] is not and cannot be made symmetric. Nevertheless, the projec-
tion idea — not the U-statistic asymptotic normality theorem — applies, as
follows.
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First, check that (under the assumption of iid variables Xi, the term
I[Xi<Xj ] has mean 1/2, and its projection onto the space of linear variables
(with mean 0) is (P (x < X)− 1

2
)x=Xi

− (P (X < x)− 1
2
)x=Xj

= F (Xj)−
F (Xi). Thus the projection of T =

∑

i<j I[Xi<Xj ] onto the same linear
space gives

∑

i<j

(F (Xj)−F (Xi)) =
n
∑

j=1

(j−1)F (Xj)−
n
∑

i=1

(n−i)F (Xi) =
n
∑

k=1

(2k−1−n)F (Xk)

which is a weighted sum of iid variables. The uniform variable F (Xk) has
variance 1/12, and it is not hard to check that the variances of T and its
projection are asymptotically the same, so that the nonidentical-summand
CLT applies to show that (

√
n/
(

n
2

)

) (T − 1
2

(

n
2

)

) is asymptotically normally

distributed with mean 0 and variance 1/9, calculated as follows.

a.var = lim
n

n

(

n

2

)−2 n
∑

k=1

1

12
(2k − 1− n)2 = lim

n

1

3n

n
∑

k=1

(1− 2k − 1
n

)2

=
1

3

∫ 1

0
(1− 2x)2 dx = 1

9

So the test rejects when T ≥
(

n
2

)

(1/2 + zα/(3
√
n).
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ARE’s & Sample ρ̂ vs. Kendall τ

In a few of the problems in HW6, it is important to ascertain not only
the variancce of the test-statistics under H0, but also the asymptotic expec-
tation under contiguous alternatives. Through consideration of the ‘slopes’
µ′(ϑ)/σ(ϑ), whose squares are called ‘efficicacy’ in other books, we compare
different test-statistics not all of which are asymptotically unbiased for the
same parameter ϑ, with respect to Asymptotic Relative Efficiency. Re-
call that for a normalized test-statistic which under contiguous alternatives
ϑ = ϑ0+c/

√
n has asymptotic expectation ah and variance σ2

0, the asymp-
totic power for a one-sided size-α test is 1−Φ(zα− ah/σ0), so that different
test-statistics are compared via ARE which is the ratio of their quantities
a2/σ2

0.

Ch. 13, #3. Based on the idea given in the problem, we check that the
scaled and centered Spearman’s Correlation is

√
n ρn =

12
√
n

n(n2 − 1)
n
∑

i=1

RX
i RY

i − 3
√
n
n+ 1

n− 1

is asymptotically equivalent to the U-statistic (without symmetrized kernel)

√
n
3

n5/2

n
∑

i=1

∑

k 6=l
sgn(Xi −Xk) sgn (Yi − Yl) − 3

√
n
n+ 1

n− 1

and, via projections, is is turn asymptotically equivalent to

3√
n

n
∑

i=1

(2FX(Xi)− 1) (2FY (Yi)− 1)

Finally, by the central limit theorem (for iid summands), this statistic under
contiguous alternatives fY (y) = fX(y − h/

√
n) is asymptotically normally

distributed with variance 1 .

Ch. 14, #3. In this problem, it is necessary to consider the signed-rank
statistic

√
n





1
(

n
2

)

∑

i<j

I[Xi+Xj>0] −
1

2




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Under the contiguous alternatives fX(x) = f(x − h/
√
n), for symmetric

density f , the statistic centered for the null hypothesis (h=0) is

√
nÛ = − 2√

n

n
∑

i=1

(F (−Xi)−
1

2
)

which via projection is asymptotically equivalent (under the contiguous al-
ternative) to

− 2√
n

n
∑

i=1

(F (−Xi)−
∫

f(x− h√
n
)F (−x) dx)+√n

∫

f(x− h√
n
) (F (−x)− 1

2
)

∼ N
(

h
∫

f(x) f(−x) dx, 1
3

)

The result is that the ‘slope’ for this statistic is
√
3
∫

f 2.

Ch. 14, #5. It is given in the book, Chapter 14, page 30, that the scaled
sample correlation coefficient

√
n rn, is asymptotically unbiased for ρ

√
n

and is normally distributed with variance (1− ρ2)2. In the present setting,
of alternatives contiguous to the independent case, with ρ = c/

√
n, we have√

n rn ∼ N (c, 1).
Next, for τ = 4

n(n−1)

∑

i<j I[(Xi−Xj)(Yi−Yj)>0] 1, the book gives asymp-

totic normality for
√
n τ with variance 4/9 and (under bivariate-normal

distribution with correlation c/
√
n)

E(
√
n τ) =

√
n (4Pc/√n(X > 0, Y > 0) − 1)

=
√
n
∫ ∞

0
φ(x) (

1

2
− Φ(− cx√

n
)) dx ∼ 2c

π

where in the last line we have approximated Φ(−cx/√n) by cxφ(0)/
√
n.

As a result, the ‘slope’ for the τ statistic is (2/π)/(3/2) = 3/π, and
the ARE of tau to rn becomes (3/π)

2.
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