Stat 710 12/19/02
Solutions to Selected Problems, HW 5

Ch. 11, #4. The key point in this problem is to use only the projection
definition, with suitable limiting operations, to obtain the usual definition.
It is a backward approach:

(i) Since E(XAM |Y) is a projection, it satisfies for all square-integrable
functions h(Y),

E((XAM=EXAM[Y)h(Y)) =0

First we check the monotonicity in problem #3: if U > V a.s., then
EU|Y) > E(V|Y) aus, because for the square-integrable nonnegative func-
tion h(Y) = Ipww<evyy, E((BUY) - EQY)AY)) = B(U -
V)R(Y)) > 0. From this monotonicity, it follows that E(X A M |Y) is an
increasing function of M, and therefore has an a.s. limit Z, finite or infi-

nite, which must in fact be finite if £ X < oo, by the motonone convergence
theorem, since E(E(X AM|Y)) < E(X) < c0.

(i) If X is square-integrable, then E(X AM|Y) / Z, and by Fatou’s
Lemma, EZ? <liminfy; E(E(X A M|Y)?) < E(X?) < 0o, and

E((X = Z)h(Y)) = lim E((X AM = Z)h(Y)) = 0

which implies that Z coincides with the usual definition of E(X|Y) as a
projection.

(iii) We know E(X AM|Y) / Z = E(X|Y). Butif EX < oo, then
(again by Fatou) EZ < oo and by dominated convergence E|E(XAM |Y)—
Z| =0, 0=FE(XAM-EXAM|Y)g(Y)— E(X—2)g(Y)).

(iv) A.s. uniqueness follows when EX < oo, since if Z* were another
positive integrable function of Y satisfying the projection identity, then by
choosing the general integrable function g¢(Y) = sgn(Z — Z*), we obtain
E((Z—-Z%)sgn(Z—-2%)) =0

Finally, E(X|Y)=E(XT|Y)— E(X~|Y) for general integrable X.

Ch. 12, #8. In this problem, the difficulty is that the ‘kernel’ h;;(x,y) =
Iji<j w<y) 1s not and cannot be made symmetric. Nevertheless, the projec-
tion idea — not the U-statistic asymptotic normality theorem — applies, as
follows.



First, check that (under the assumption of iid variables X, the term
Iix,<x,) hasmean 1/2, and its projection onto the space of linear variables
(with mean 0) is (P(z < X) — 1)o=x, — (P(X <2) — )ox, = F(X;) —
F(X;). Thus the projection of T' = 7, ;Ijx,<x,) onto the same linear
space gives

SUFCG)-FOG) = 3 G-DF(G) = 3 (-iF(X) = 3 (k1) F(X,

i<j j=1 i=1

which is a weighted sum of 4id variables. The uniform variable F(X}) has
variance 1/12; and it is not hard to check that the variances of T and its
projection are asymptotically the same, so that the nonidentical-summand
CLT applies to show that (v/n/ (g)) (T - 3 (g)) is asymptotically normally

distributed with mean 0 and variance 1/9, calculated as follows.
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Stat 710, HW6 12/19/02
ARE’s & Sample p vs. Kendall 7

In a few of the problems in HW6, it is important to ascertain not only
the variancce of the test-statistics under Hjy, but also the asymptotic expec-
tation under contiguous alternatives. Through consideration of the ‘slopes’
W (9)/o(9), whose squares are called ‘efficicacy’ in other books, we compare
different test-statistics not all of which are asymptotically unbiased for the
same parameter 1, with respect to Asymptotic Relative Efficiency. Re-
call that for a normalized test-statistic which under contiguous alternatives
¥ = Jg+c/+/n has asymptotic expectation ah and variance oZ, the asymp-
totic power for a one-sided size-a test is 1 —®(z, — ah/0y), so that different
test-statistics are compared via ARE which is the ratio of their quantities

a’/od.

Ch. 13, #3. Based on the idea given in the problem, we check that the
scaled and centered Spearman’s Correlation is
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is asymptotically equivalent to the U-statistic (without symmetrized kernel)
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and, via projections, is is turn asymptotically equivalent to
3 n
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Finally, by the central limit theorem (for iid summands), this statistic under
contiguous alternatives fy(y) = fx(y — h/\/n) is asymptotically normally
distributed with variance 1 .

Ch. 14, #3. In this problem, it is necessary to consider the signed-rank
statistic
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Under the contiguous alternatives fx(z) = f(z — h/y/n), for symmetric
density f, the statistic centered for the null hypothesis (h=0) is
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which via projection is asymptotically equivalent (under the contiguous al-
ternative) to
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The result is that the ‘slope’ for this statistic is /3 [ f2.

Ch. 14, #5. It is given in the book, Chapter 14, page 30, that the scaled
sample correlation coefficient +/nr,, is asymptotically unbiased for p+/n
and is normally distributed with variance (1 — p?)?. In the present setting,
of alternatives contiguous to the independent case, with p = ¢/\/n, we have

vnr, ~ Ne 1).

Next, for 7 = ﬁ >icj lixi—x;)(vi—v;)>01 1, the book gives asymp-
totic normality for +/n7 with variance 4/9 and (under bivariate-normal
distribution with correlation ¢//n)

B(/AT) = Vi(APyym(X >0,Y >0) = 1)

cx 2c

= Vi [T ol (5 — o= e ~ X

where in the last line we have approximated ®(—cz/y/n) by cx¢(0)/\/n.

As a result, the ‘slope’ for the 7 statistic is (2/7)/(3/2) = 3/m, and
the ARE of tau to r, becomes (3/m)>.



