State Space Represenations for ARMA Processes

The book (Shumway and Stoffer) discusses this topic in Sections 6.1 and 6.2. The purpose of this handout is to emphasize that there are at least three different state space representations of stationary and causal $A R M A(p, q)$ processes in common use, and to distinguish their form and features with reference to the \mathbf{R} Kalman filtering and forecasting functions. In each case, we want to represent the process Y_{t} satisfying

$$
\begin{equation*}
\phi(B) Y_{t}=\theta(B) W_{t} \quad, \quad W_{t} \sim W N\left(0, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

with polynomials $\phi(z)=1-\phi_{1} z-\cdots-\phi_{p} z^{p}, \quad \theta(z)=1+\theta_{1} z+\cdots \theta_{q} z^{q}$.
Method 1. The simplest one to explain and justify is based on a state-vector $\mathbf{X}_{t}=$ $\left(X_{t}, X_{t-1}, \ldots, X_{t-r+1}\right)^{\prime}$ of dimension $r=\max (p, q+1)$. Denote

$$
\underline{\phi}=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\prime}, \underline{\theta}=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{r}\right)^{\prime}, \quad \phi_{j}=0 \text { for } j>p, \theta_{0}=1, \theta_{j}=0 \text { for } j>q
$$

The observation equation connecting \mathbf{X}_{t} and Y_{t} by

$$
Y_{t}=\underline{\theta}^{\prime} \mathbf{X}_{t}=X_{t}+\theta_{1} X_{t-1}+\cdots \theta_{q} X_{t-q}
$$

and X_{t} is defined as the causal $A R(p)$ process associated with $\underline{\phi}$ and W_{t}, i.e., $\phi(B) X_{t}=W_{t}$ or

$$
\begin{equation*}
\mathbf{X}_{t+1}=\mathbf{T} \mathbf{X}_{t}+\binom{1}{\mathbf{0}} W_{t}, \quad \text { and } T_{1 j}=\phi_{j}, \quad T_{i, j}=\delta_{i-1, j} \text { for } i>1, \text { all } j \tag{2}
\end{equation*}
$$

The justification of this state equation is that $Y_{t}=\theta(B)(\phi(B))^{-1} W_{t}$ while $X_{t}=(\phi(B))^{-1} W_{t}$.

Method 2. A second and different representation, which seems to be the one that the \mathbf{R} function KalmanForecast relies on (with reference to a 1980 Applied Statistics paper of Gardner, Harvey and Phillips), is based on the same dimension r and transition matrix \mathbf{T}, but now with state vector

$$
\begin{equation*}
\underline{\alpha}_{t}=\left(\alpha_{t, 1}, \ldots, \alpha_{t, r}\right)^{\prime} \quad, \quad \alpha_{t, i}=\sum_{j=i}^{r}\left[\phi_{j} Y_{t+i-j-1}+\theta_{j-1} W_{t+i-j}\right] \tag{3}
\end{equation*}
$$

In this case, with observation equation $Y_{t}=\alpha_{t, 1}$, it is easy to see for all $i \leq r$ that the state-equation holds in the form

$$
\alpha_{t, i}=\phi_{i} \alpha_{t-1,1}+\theta_{i-1} W_{t}+\alpha_{t-1, i+1}
$$

where $\alpha_{s, r+1} \equiv 0$ by convention. This last equation can be re-written in matrix form, in terms of the transpose of the same matrix T appearing in Method 1, as follows

$$
\begin{equation*}
\underline{\alpha}_{t+1}=T^{\prime} \underline{\alpha}_{t}+W_{t}\left(\theta_{0}, \theta_{1}, \ldots, \theta_{r-1}\right)^{\prime} \tag{4}
\end{equation*}
$$

Method 3. Whenever $p \leq q$, the dimension r of the previous two state-space representations is $q+1$. However, as presented in the 1991 book of Brockwell and Davis, Example 12.1.6 in Chapter 12, there is a valid general representation of dimension $m=\max (p, q)$. The justification is given there, and is less intuitive. We do not reproduce the definition here.

Initialization and Application to Forecasting

Methods 1 and 2 differ in one important respect from the point of view of forecasting. If observations $Y_{t}, Y_{t-1}, \ldots Y_{1}$ are specified, and all Y_{s} for $s \leq 0$ are set to 0 then the conditional expectations of all future Y_{s} observations $(s>t)$ are well-specified given the past through the recursion in Method 1, but the same is not true for Method 2 because the W_{s} observations are not fixed for $s \leq t$. This is an issue of initialization. In the setting of Method 1 when the ARMA process is invertible, $Y_{s} \equiv 0$ for all $s \leq 0$ if and only if $X_{s} \equiv 0$ for all $s \leq 0$. In that case, we easily solve the equations

$$
X_{1}=Y_{1}, X_{2}+\theta_{1} X_{1}=Y_{2}, \ldots X_{r}+\theta_{1} X_{r-1}+\cdots+\theta_{q} X_{r-q}=Y_{r}
$$

recursively, and then for all $s>r$, the observation equation determines further X_{s} values from further Y_{s} values (when none are missing).

We indicate in the ${ }^{*}$.RLog files on the course web-page, first in the $A R(p)$ case, how to do forecasting and standardized residuals from ARMA model fits using the KalmanForecast function in \mathbf{R}.

