
Eric Slud, STAT 730 May 8, 2017

State Space Represenations for ARMA Processes

The book (Shumway and Stoffer) discusses this topic in Sections 6.1 and 6.2. The
purpose of this handout is to emphasize that there are at least three different state
space representations of stationary and causal ARMA(p, q) processes in common use,
and to distinguish their form and features with reference to the R Kalman filtering and
forecasting functions. In each case, we want to represent the process Yt satisfying

φ(B)Yt = θ(B)Wt , Wt ∼WN(0, σ2) (1)

with polynomials φ(z) = 1 − φ1z − · · · − φpz
p, θ(z) = 1 + θ1z + · · · θqzq.

Method 1. The simplest one to explain and justify is based on a state-vector Xt =
(Xt, Xt−1, . . . , Xt−r+1)

′ of dimension r = max(p, q + 1). Denote

φ = (φ1, . . . , φr)
′ , θ = (θ0, θ1, . . . , θr)

′ , φj = 0 for j > p, θ0 = 1, θj = 0 for j > q

The observation equation connecting Xt and Yt by

Yt = θ′Xt = Xt + θ1Xt−1 + · · · θqXt−q

and Xt is defined as the causal AR(p) process associated with φ and Wt,
i.e., φ(B)Xt = Wt or

Xt+1 = TXt +

(
1

0

)
Wt , and T1j = φj , Ti,j = δi−1,j for i > 1, all j (2)

The justification of this state equation is that Yt = θ(B) (φ(B))−1Wt while
Xt = (φ(B))−1Wt.

Method 2. A second and different representation, which seems to be the one that the R
function KalmanForecast relies on (with reference to a 1980 Applied Statistics paper of
Gardner, Harvey and Phillips), is based on the same dimension r and transition matrix
T, but now with state vector

αt = (αt,1, . . . , αt,r)
′ , αt,i =

r∑
j=i

[
φj Yt+i−j−1 + θj−1Wt+i−j

]
(3)

In this case, with observation equation Yt = αt,1, it is easy to see for all i ≤ r that the
state-equation holds in the form

αt,i = φi αt−1,1 + θi−1Wt + αt−1,i+1
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where αs,r+1 ≡ 0 by convention. This last equation can be re-written in matrix form,
in terms of the transpose of the same matrix T appearing in Method 1 , as follows

αt+1 = T ′ αt + Wt (θ0, θ1, . . . , θr−1)
′ (4)

Method 3. Whenever p ≤ q, the dimension r of the previous two state-space represen-
tations is q+1. However, as presented in the 1991 book of Brockwell and Davis, Example
12.1.6 in Chapter 12, there is a valid general representation of dimension m = max(p, q).
The justification is given there, and is less intuitive. We do not reproduce the definition
here.

Initialization and Application to Forecasting

Methods 1 and 2 differ in one important respect from the point of view of forecasting.
If observations Yt, Yt−1, . . . Y1 are specified, and all Ys for s ≤ 0 are set to 0 then the
conditional expectations of all future Ys observations (s > t) are well-specified given the
past through the recursion in Method 1 , but the same is not true for Method 2 because
the Ws observations are not fixed for s ≤ t. This is an issue of initialization. In the
setting of Method 1 when the ARMA process is invertible, Ys ≡ 0 for all s ≤ 0 if and
only if Xs ≡ 0 for all s ≤ 0. In that case, we easily solve the equations

X1 = Y1, X2 + θ1X1 = Y2, . . . Xr + θ1Xr−1 + · · · + θqXr−q = Yr

recursively, and then for all s > r, the observation equation determines further Xs values
from further Ys values (when none are missing).

We indicate in the *.RLog files on the course web-page, first in the AR(p) case,
how to do forecasting and standardized residuals from ARMA model fits using the
KalmanForecast function in R.
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