Sample Problems for In-Class Test, STAT 730

- (1). Consider the following difference-equations connecting a time series $\{X_t\}_{t=-\infty}^{\infty}$ with an associated White-noise sequence $\{W_t\}_{t=-\infty}^{\infty}$. Which of them have stationary solutions X_t ? For each, justify stationarity or explain why it does not hold.
 - (a) $X_t + X_{t-1} + X_{t-2} = W_t$
 - (b) $X_t 0.8X_{t-1} = 2W_t + W_{t-1}$
 - (c) $X_t + X_{t-2} = W_t$
- (2). For each series in (1) that you identified as stationary: is the series causal? invertible?
- (3). For the stationary time series solution X_t of the equation

$$X_t = W_t + W_{t-1} + 0.25W_{t-2}$$
 , $W_t \sim WN(0, \sigma^2)$

- (a) Find the best linear predictor of X_3 in terms of $(X_s, s = 2, 1, 0, -1, ...)$, and find the mean squared prediction error.
 - (b) Find a general expression for W_t in terms of $(X_s, s \leq t)$.
- (4). If $X_t = W_t 1.5W_{t-1} + 0.5W_{t-2}$ for all $t \ge 1$, where $(W_s, s \ge -1)$ is a White Noise with mean 0 and variance 1, then find the best linear predictor for X_3 in terms of X_1, X_2 . Also find (but do not reduce) a numerical expression for the mean-squared error of this predictor.
- (5). Consider the ARMA(1,1) stationary process X_t defined in terms of a White Noise $(0, \sigma^2)$ process W_t by the equation $X_t aX_{t-1} = W_t + bW_{t-1}$, where |a|, |b| < 1. Then find $Cov(X_t, W_t)$, $Cov(X_t, W_{t-1})$, $\gamma_X(0)$, and $\gamma_X(1)$.
- (6). Find the spectral density of the proces X_t in (5).
- (7). Is a stationary causal linear time series always invertible? Prove or give a counterexample.

- (8). Suppose that $X_t = \alpha X_{t-1} + \beta X_{t-2} + W_t$ is a causal AR(2) process, where W_t is a (0,1) White Noise sequence. Suppose for a large n that the column $(X_3, \ldots, X_n)^{tr}$ is linearly regressed on the $(n-2) \times 3$ design matrix \mathbf{X} with first column all 1's, second column $(X_2, \ldots, X_{n-1})^{tr}$ and third column $(X_1, \ldots, X_{n-2})^{tr}$. Denote the least-squares regression coefficients by $\hat{a}_0, \hat{a}_1, \hat{a}_2$. What will be the limiting values $a_{j*}, j = 0, 1, 2$, for these three fitted coefficients? Express the large-n limiting distribution of $\sqrt{n} (\hat{a}_j a_{j*})_{j=0,1,2}$ as explicitly as you can in terms of α, β .
- (9). Suppose that $X_t = A_1 \cos(\lambda t) + A_2 \sin(\lambda t) + W_t$ for all integers t, where A_1, A_2 are independent random variables with mean 0 and variance σ_A^2 and W_t is a WN(0, σ^2) sequence independent of (A_1, A_2) . Show that X_t is widesense stationary but not strictly stationary. Also find its autocovariance function and spectral distribution function.

Hint: the spectral d.f. has jumps, so there is no spectral density.

(10). Find the asymptotic variance-covariance function V for the vector

$$\sqrt{n}\left(\hat{\gamma}(0) - \gamma(0), \ \hat{\gamma}(1) - \gamma(1), \ \hat{\gamma}(2) - \gamma(2)\right)$$

based on observations X_1, \ldots, X_n from the time series X_t in problem (3) above, if the white noise sequence W_t is normally distributed. Explain how you would use this result to form a confidence interval for $\gamma(1)$ based on the estimates $(\hat{\gamma}(h), h = 0, 1, 2)$.