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Abstract

The most widespread method of computing confidence intervals (CIs) in complex surveys is to add

and subtract the margin of error (MOE) from the point estimate, where the MOE is the estimated

standard error multiplied by the suitable Gaussian quantile. This Wald-type interval is used by the

American Community Survey (ACS), the largest US household sample survey. For inferences on small

proportions with moderate sample sizes, this method often results in marked under-coverage and lower

CI endpoint less than 0. We assess via simulation the coverage and width, in complex sample surveys,

of seven alternatives to the Wald interval for a binomial proportion with sample size replaced by the

‘effective sample size,’ that is, the sample size divided by the design effect. Building on work of Franco

et al. (2014), our simulations address the impact of clustering, stratification, different stratum sampling

fractions, and stratum-specific proportions. We show that all intervals undercover when there is

clustering and design effects are computed from a simple design-based estimator of sampling variance.

Coverage can be better calibrated for the alternatives to Wald by improving estimation of the effective

sample size through superpopulation modeling. This approach is more effective in our simulations than

modifications of effective sample size proposed by Korn and Graubard (1998) and Dean and Pagano

(2015). We recommend intervals of the Wilson or Bayes uniform-prior form, with the Jeffreys-prior

interval not far behind.
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1 Introduction

Constructing well-calibrated confidence intervals (CIs) for population proportions based on survey data is

challenging, unless the sample size is very large. With a simple random sample (SRS) for a large

population where the sampling fraction is negligible, the data are approximately binomial, and CIs that

guarantee at least nominal coverage are available (Clopper and Pearson 1934, Blyth and Still 1983, and

Casella 1986). These CIs tend to be conservative (exceed the nominal coverage) and wide. However,

methods that guarantee nominal coverage for the binomial case do not necessarily do so when applied to

complex survey data. Intervals based on randomized tests– that is, tests based on exact discrete

distributions with auxiliary randomization to produce rejection regions of exact size α under the null

hypothesis– exist in the SRS case (see, for instance, Wright 1997). Such tests would be very difficult to

construct in more complex settings, and we focus only on non-randomized intervals.

Many surveys use intervals of the form p̂± zα/2 · ŜE, or equivalently p̂±MOE, where p̂ is an estimate

of the proportion, ŜE is an estimate of its standard error, zα/2 is the (1− α/2) quantile of the normal

distribution, sometimes replaced by a corresponding t-quantile, and MOE is the Margin of Error. The Wald

interval is the most basic, with ŜE =
√
p̂(1− p̂)/n , but it can perform poorly even in the SRS case. An

improvement is provided by replacing the sample size with the effective sample size (e.g., Korn and

Graubard 1998, Liu and Kott 2009, Dean and Pagano 2015), but the Wald interval still performs poorly.

We conduct an extensive simulation study to evaluate and compare coverage and width of the Wald and

seven other candidate intervals, as well as the performance of three different approaches to estimating the

effective sample size. The three approaches include a simple design-based approach, a modification to this

design-based estimate recommended by Dean and Pagano (2015), and the use of an improved method to

estimate the sampling variance based on super-population model assumptions. The intervals considered are

the Wald, Agresti-Coull (1998), Clopper-Pearson (1934), Wilson (1927), Arcsine Square Root (Sokal and
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Rohlf 1995, as modified by Gilary et al. 2012) and two Bayesian intervals using the Jeffreys and the

uniform priors. We also study the CI for the logit-transformed proportion, which was previously

considered in Liu and Kott (2009) and Dean and Pagano (2015). Results for the logit-transformed method,

or Logit interval, are limited to the Online Supplement, because its performance was less promising than

competitors. Our results are consistent with those of Brown et. al (2001), who find that it can produce very

wide intervals in the binomial case. The Agresti-Coull, Wilson, and Jeffreys- and uniform-prior intervals

previously performed well in the SRS setting (Brown et al. 2001, Carlin and Louis 2009). The

Clopper-Pearson always meets or exceeds the nominal coverage in the SRS setting, and was recommended

by Korn and Graubard (1998) for settings with small expected numbers of successes. Performance of the

Arcsine Square Root interval was compared by simulation with a cell-based version in Gilary et al. (2012)

in a small-area (Fay-Herriot) model setting. A modified Arcsine Square Root interval was used to produce

the Census Bureau’s May 2012 publicly-released confidence bounds for estimates of 2010 Census

erroneous enumeration rates. For all these intervals, in complex surveys we replace the sample size by an

estimate of the effective sample size. The Bayesian intervals are based on the Beta prior and posterior

distribution from the SRS case, but also replace sample size and observed proportion by effective sample

size and design-weighted estimated proportion.

This work builds on the simulation studies in Franco et al. (2014) and Dean and Pagano (2015). We

evaluate the joint distribution of coverage and width, in the context of clustering and stratification, of

several degrees of heterogeneity within and between clusters and among strata, and of uncertainty in

estimating sampling variances. We set aside samples for which the estimated sampling variance is 0, and so

our results are conditional on a positive estimated variance. Our primary objective is to find intervals that

have well-calibrated coverage and controlled width. We treat a wide range of scenarios, and aim to find

intervals that work well across all scenarios rather than prescribing criteria for the use of particular

intervals, because the determining factors will generally not be known to the analyst.

For intervals that perform well in the SRS context, our results suggest that the principal cause of

undercoverage in complex surveys is uncertainty in estimating the effective sample size. Hence, we have

improved estimation of the sampling variance and consequently of the design effect and effective sample

size. These improvements come by making basic assumptions about the superpopulation. We then take the

expectation both with respect to the sampling design and the superpopulation model when computing the
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variance of the survey weighted estimator (i.e., the “anticipated variance” of Isaki and Fuller, 1982). Chen

and Rust (2017) also use superpopulation models to improve variance estimates, based on Kish (1987)’s

well-known design effect formula.

Our study is motivated by the American Community Survey (ACS), the largest household sample survey in

the United States, sampling approximately 3.5 million addresses annually, and producing billions of

estimates (US Census Bureau, 2014). ACS publishes CIs of the form p̂± zα/2 · ŜE, with ŜE based on

the Successive Difference Replication (SDR) Method (Fay and Train, 1995). See U.S. Census Bureau

(2014). Despite its large overall sample size, the extensive cross-classification of its many demographic,

personal and economic questions can generate domains with small sample sizes. Due to the sheer quantity

and diversity of estimates, we consider only basic CI methods that are easy to implement and depend only

on sample size, the survey-weighted estimate of the proportion, and a sampling variance estimate used to

estimate the design effect and effective sample size. Three different approaches to estimating the sampling

variance and effective sample size are considered.

Other authors have conducted related simulations for complex surveys. Liu and Kott (2009) and Kott and

Liu (2009) compared one-sided intervals for proportions in stratified SRS surveys; we focus on two-sided

intervals. Korn and Graubard (1998) studied CIs for small proportions in surveys including clusters (of

sizes 10 or 100) and unequal weights by simulation and data analysis, comparing intervals based on

design-effect modifications including replacement of Gaussian by t quantiles in Wald-type intervals. Dean

and Pagano (2015) considered essentially the same intervals we do (excluding the Arcsine Square Root

interval), varying overall prevalence p and Intracluster Correlations (ICCs) within a design of 30 primary

and 7 secondary sampling units. They also have limited results related to stratification, including a case

with two strata in their sampling design. Their modification of effective sample size resembles Korn and

Graubard’s (1998), except that in their adjustment factor (our formula (20)), they replace the t-quantile by a

z-quantile in the numerator. Kott et al. (2001) also discuss confidence intervals for complex surveys, but

their simulations are carried out under SRS.

The sampling design in our simulations is that of a single-stage stratified SRS sample of all-or-none clusters

of identical size. The strata sampling fractions and the cluster sizes, as well as the relationship between the

sample sizes and the true stratum proportions, vary among runs. Although this is more basic than the
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complex designs common in practice, our setup is more complex than those of previously published

simulation studies. Moreover, single stage SRS samples of appropriately chosen ultimate clusters can be

used to approximate more complex epsem or stratified epsem-within-stratum designs (see for example

Kalton, 1979). In an epsem design each unit in the population has an equal probability of selection.

Our research builds on previous work by: (1) a more elaborate multi-factorial simulation design that allows

estimation of the main effects of scenario components and interactions, (2) assessing the impact of

uncertainty in estimating the effective sample size by comparing results to those using the true effective

sample size, and (3) applying superpopulation models to improve performance by better estimation of the

sampling variance, and hence of the effective sample size.

Section 2 defines the eight intervals we study, and Section 3 develops estimation of the effective sample

size. Section 4 provides simulation specifications. Section 5 presents results, and Section 6 draws

conclusions and formulates recommendations and promising avenues for future research. The appendix

includes mathematical proofs, additional details of the simulations, and a brief description of the R code (R

Core Team, 2017) and workspace for computing design effect estimates and CIs that are included in the

Supplementary Materials.

2 Candidate Intervals

We consider seven alternatives to the basic Wald interval for a binomial proportion: Jeffreys and Uniform

prior Bayesian intervals; the Clopper-Pearson, Wilson, Agresti-Coull, Arcsine Square Root, and Logit

intervals. Each of these interval methods is in turn treated in three ways: using a simple design-based

estimate of the effective sample size, adjusting this estimate as recommended by Dean and Pagano (2015),

and estimating the design effect using superpopulation model assumptions.

Here, we describe the interval construction methods first for Bernoulli sampling, with n trials and X

successes; the intervals for complex surveys are obtained by replacing n by an estimate of the effective

sample size neff and X by an estimate of neff · p, where p is estimated by the survey-weighted proportion.

The different methods of estimating the effective sample size are discussed in Section 3.
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2.1 Wald Interval

The Wald interval is

p̂± zα/2 ·
√
p̂(1− p̂)/n, (1)

with p̂ = X/n and zα/2 the quantile of the standard normal distribution. This is a special case of what we

refer to as “Wald-type intervals” for general complex surveys

p̂± zα/2 · ŜE, (2)

where p̂ is possibly survey weighted and ŜE is an estimate of its standard error.

The normal quantiles are sometimes replaced by t-quantiles, with the degrees of freedom depending on the

amount of clustering and stratification (Korn and Graubard, 1998). This adjustment is based on empirical

evidence (Frankel 1971, ch. 7), with some formal justification under strong assumptions (Korn and

Graubard, 1990).

2.2 Bayesian Intervals: Jeffreys and Uniform

With the prior [p | a, b] = Beta(a, b); a, b > 0 and data distributed as [X | p, n] = Binomial(n, p), the

posterior distribution is [p | X,n] = Beta(X + a, n−X + b). With qbeta(r; ·, ·) denoting the r quantile

of a Beta distribution, the (1− α) ∗ 100% equal-tail credible interval is,

L(X,n) = qbeta(α/2;X + a, n−X + b) (3)

U(X,n) = qbeta(1− α/2;X + a, n−X + b)

The Jeffreys interval (“JeffPr”), uses a = b = 0.5, and the Uniform interval (“UnifPr”) uses a = b = 1.

Carlin and Louis (2009) show that these have excellent frequentist properties for SRS sampling, making

them attractive candidates in the survey context.
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2.3 Clopper-Pearson Interval

The Clopper-Pearson interval (“ClPe” or “CP”) is based on exact binomial tails, and can be expressed as,

L(X,n) =
v1Fv1,v2(α/2)

v2 + v1Fv1,v2(α/2)
= qbeta(α/2;X,n−X + 1) (4)

U(X,n) =
v3Fv3,v4(1− α/2)

v4 + v3Fv3,v4(1− α/2)
= qbeta(1− α/2;X + 1, n−X)

where v1 = 2X , v2 = 2(n−X + 1), v3 = 2(X + 1), v4 = 2(n−X), and Fd1,d2(β) is the β quantile of an

F distribution with d1 and d2 degrees of freedom (Korn and Graubard, 1998). Interval endpoints in (4) are

very similar to those of Jeffreys and Uniform, shown in (3), but demonstrably wider (see Appendix A for a

proof).

2.4 Wilson Interval

Like the Wald interval, the Wilson interval (“Wils”) can be derived from an asymptotic pivot. In place of

the Wald pivot (p− p̂)/
√
p̂(1− p̂)/n, the Wilson interval uses (p− p̂)/

√
p(1− p)/n, producing CI limits,

X + z2/2

n+ z2
± zn1/2

n+ z2

{
p̂q̂ + z2/(4n)

}1/2
, (5)

where z = zα/2 from now on.

2.5 Agresti-Coull Interval

The Agresti-Coull Interval (“AgCo” or “AC”) uses the same form as the Wald interval (2), replacing p̂ with

the center of the Wilson interval p̃ = (X + z2/2)/(n+ z2), and n with the denominator of p̃, i.e.

ñ = n+ z2. The interval is then

p̃ ± z
√
p̃(1− p̃)/ñ. (6)
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Agresti and Coull (1998) deal with the case of a 95% CI, pointing out that, at this confidence level, this is

approximately the same as adding two successes and two failures and then applying the Wald interval.

They also show that the center of the Wilson interval is a weighted average between p̂ and 0.5. They note

that the interval is simpler in form than the Wilson interval, is not as conservative as the Clopper-Pearson

interval, and performs better than the Wald interval in the SRS case.

2.6 Arcsine Square Root Interval

The Arcsine Square Root Interval (“Assqr”) uses arcsine
√
p as variance stabilizing transformation, along

with p̂ = (X + 1/2)/(n+ 1) (as in Jeffreys) to correct the marked anti-conservatism of the Wald interval

(Gilary et al. 2012). The Wald formula (2) produces endpoints in the transformed scale which are

back-transformed to produce CI limits,

L(X,n) = sin2

{
max

(
0, arcsin

√
X + .5

n+ 1
− z√

4n

)}
(7)

U(X,n) = sin2

{
min

(
π

2
, arcsin

√
X + .5

n+ 1
+

z√
4n

)}

2.7 Logit Interval

The Logit interval applies a logit transformation, then produces a Wald-type interval, and then

back-transforms to the original scale, yielding:

L(X,n) =
eλl

1 + eλl
(8)

U(X,n) =
eλu

1 + eλu

where

λl = λ̂− z
√
V̂ , and λu = λ̂+ z

√
V̂ with λ̂ = log(p̂/(1− p̂)), and V̂ = n/(X(n−X)). Note that this

interval is undefined when p̂ = 0 or p̂ = 1. We define λ̂ to be −∞ when p̂ = 0,∞ when p̂ = 1, and

= log
(
p̂/(1− p̂)

)
otherwise. Such a definition does not affect our results since we condition on positive
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estimated variance.

2.8 Discussion of candidate intervals

Brown et al. (2001, 2002) proposed alternative methods that ameliorate the erratic coverage of the standard

Wald interval, recommending Jeffreys and Wilson for small sample sizes and Agresti-Coull for large

sample sizes (Brown et al. 2001, Section 5). These intervals are appropriate for survey data with SRS

designs where the sampling fraction is small or sampling is with replacement, but they are not designed to

accommodate the clustering, stratification, or unequal weights of more complex sample surveys.

A common approach to constructing confidence intervals for proportions from complex sample survey data

is to modify the inputs to binomial intervals, such as the Wald interval (1), to account for survey weighting

and the design effect. The survey-weighted estimated proportion, p̂, is used along with a consistent

design-based estimate, V̂ar(p̂), of its variance. These combine to estimate the design effect (Kish 1965) and

effective sample size,

D̂eff =
V̂ar(p̂)

p̂(1− p̂)/n
(9)

n̂eff =
n

D̂eff
=
p̂(1− p̂)
V̂ar(p̂)

.

For simplicity we ignore the finite population correction in the SRS variance expression in the denominator

of D̂eff . In CI expressions, n is replaced by n̂eff and X by p̂ · n̂eff without rounding (e.g., Korn and

Graubard 1998, Liu and Kott 2009, Dean and Pagano 2015). The effective sample size neff can be

interpreted as the sample size needed under an SRS design to obtain the same large-sample CI width

obtained under the complex sampling scheme. Applying the design-effect modifications to the Wald

interval produces p̂± zα/2
√
V̂ar(p̂).
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3 Estimating the Effective Sample Size

Let Yhki be the (binary) response for individual i in cluster k in stratum h. Denote the population count in

stratum h and cluster k by Yhk+ and the population count in stratum h by Yh++. That is,

Yhk+ =
∑
i∈Chk

Yhki , Yh++ =

Kh∑
k=1

Yhk+ =

Kh∑
k=1

∑
i∈Chk

Yhki ,

where Chk denotes the set of units or individuals i belonging to cluster k in stratum h, and Kh is the

number of clusters in stratum h. The population total is denoted by Y , and the corresponding sample

weighted estimator is

Ŷ =

H∑
h=1

Ŷh++ , Ŷh++ =
Kh

nCh

∑
k∈Sh

Yhk+, (10)

where Sh and nCh are the set and number of sampled clusters in stratum h, and H is the number of strata.

For future reference, also define Nh to be the population size in stratum h, and denote by c the size of each

cluster in the population.

The population proportion Ȳ = Y/N has expectation E(Ȳ ) = θ, and confidence intervals for it are based

on (10) together with the ‘working model’ neff · (Ŷ /N) ∼ Binom(neff , Ȳ ), where neff is a suitable

effective sample size. It is permissible for values of neff · (Ŷ /N) and neff to be non-integer within

likelihood-based methods such as those implemented in R.

We evaluate the performance of CIs for the overall proportion Ȳ of successes within a survey assumed to

have the sampling design of a SRS of clusters, with clusters sampled all-or-none. Generalizations of

design- and model-based estimators to the case of cluster sampling with unequal cluster sizes and weights

within strata are given in Appendix B.

We compare coverages and widths of the intervals using the ‘true’ effective sample size based on the actual

simulated (frame) population, and using ‘estimated’ effective sample sizes computed from sampled data.

For the former, we compare two approaches; one with no superpopulation model assumptions, and one that

makes some basic assumptions. We incorporate finite population corrections, although the sampling

fractions we consider are small.
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3.1 Design-based Estimate of the Design Effect

Let f = c nC/N denote the overall sampling fraction, with nC the number of clusters sampled, and

fh = c nCh /Nh = nCh /Kh the sampling fraction within the h’th stratum. The design variance Ŷ of the

survey estimator (for stratumwise SRS cluster samples) is

Var(Ŷ ) =

H∑
h=1

K2
h (1− fh)

nCh
s2
Yh·+

, s2
Yh·+

=
1

Kh − 1

Kh∑
k=1

(
Yhk+ −

Yh++

Kh

)2

. (11)

So the true design effect and true effective sample size are,

Deff =
n Var(Ŷ )

Y (N − Y ) (1− f)
, neff = n/Deff. (12)

Superpopulation model-free estimates of the design effect and effective sample size, denoted D̂eff and

n̂eff , are:

V̂ar(Ŷ ) =

H∑
h=1

K2
h (1− fh)

nCh
ŝ2
Yh·+

, ŝ2
Yh·+

=
1

nCh − 1

∑
k∈Sh

Yhk+ −
1

nCh

∑
l∈Sh

Yhl+

2

, (13)

D̂eff =
n V̂ar(Ŷ )

Ŷ (N − Ŷ ) (1− f)
, n̂eff = n/D̂eff. (14)

3.2 Model-based Estimate of the Design Effect

The method that Kish (1987) used to derive his famous approximate formula for design effects in terms of

intra-cluster correlations (ICCs) and unit-level attribute variances can be viewed as an attempt to combine

design-based variance formulas with simple modeling assumptions about the superpopulation. Like Gabler

et al. (1999) and Chen and Rust (2017), we extend this method (in Appendix B) to obtain a model-based

estimator of Deff under somewhat more general assumptions. The assumptions that we consider here are:

(A.i) E(Yhki) = τh for all clusters k and individuals i in stratum h,

(A.ii) Var(Yhki) = σ2
h for all k in stratum h and i in cluster Ckh,

(A.iii) Corr(Yhki, Yhk′ j) = ρ when i, j ∈ Ckh and k = k′, and Corr= 0 otherwise.
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Assumption (A.iii) is restrictive in assuming constancy of ICCs across strata, and (A.i)-(A.ii) might also

oversimplify in assuming distributional parameters of all attributes within stratum to be the same. Although

a superpopulation model based on these assumptions is too simple to be realistic, we will find that the

reduction in variability of the estimated design effect more than compensates for potential bias.

Remark 1 In our setting of binary Yhki, the assumptions (A.i) and (A.ii) are redundant, since

σ2
h = τh(1− τh) for all h. For this reason, the parameter estimates σ̂2

h are defined to be

(nh/(nh − 1)) τ̂h (1− τ̂h) as in (16) below, or (as actually implemented in our simulations) by the formula

(nCh /(n
C
h − 1)) τ̂h (1− τ̂h) which inflates variances in a helpful way. 2

As justified in Appendix B, the model-based estimation formula derived from (A.i)-(A.iii) for Var(Ŷ ) that

we implement in our simulations (specifically for the stratumwise SRS cluster sampling of equal-sized

clusters of binary attributes) is closely related to Kish’s formula. The variance formula is

V̂ar
∗
(Ŷ ) =

H∑
h=1

σ̂2
h

Kh − nCh
nCh

Nh

(
1 + (c− 1) ρ̂

)
(15)

with σ2
h and ρ parameters estimated according to the formulas τ̂h =

∑
k∈Sh

Yhk+/nh and

σ̂2
h =

1

cnCh − 1

∑
k∈Sh

∑
i∈Ckh

(
Yhki − τ̂h

)2
=

nh
nh − 1

τ̂h(1− τ̂h) (16)

1− ρ̂ =
n−H

2n(c− 1)

H∑
h=1

∑
k∈Sh

∑
i,j∈Ckh

(Yhki − Yhkj)2
/ H∑

h=1

(cnCh − 1)σ̂2
h (17)

(but ρ̂ is defined as 0 when c = 1, and in the simulations, ρ̂ was set to 0 whenever it was negative in (17)).

For the more realistic case of unequal-sized clusters and unknown cluster sizes for unsampled clusters, see

(26) in Appendix B.

The corresponding estimated design effect and effective sample size are:

D̂eff
∗

=
n V̂ar

∗
(Ŷ )

Ŷ (N − Ŷ ) (1− f)
, n̂∗eff = n/D̂eff

∗
. (18)
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These formulas have analogs, justified and developed more generally in Appendix B, for more complex

designs. Our broader point is that generalized model-based formulas such as (18) yield CIs with better

coverage properties than CIs from purely design-based estimates of effective sample size.

3.3 Adjustments to Estimated Effective Sample Size

Korn and Graubard (1998) suggested multiplying the effective sample size by a factor,

n̂dfeff = n̂eff ·
{
tn−1(1− α/2)

td(1− α/2)

}2

, (19)

where the design degrees of freedom are d = #{sampled clusters} - #{strata} for a multi-stage design with

stratified selection of clusters at the first stage, and n̂eff is an estimate of the effective sample size. If

n− 1 < d, as when there is significant clustering, the bracketed ratio will be less than 1. The effective

sample size will be reduced, resulting in wider intervals, counteracting to a degree the undercoverage

typically associated with clustering.

Dean and Pagano (2015) similarly define adjusted estimated effective sample size as,

n̂dfDPeff = n̂eff ·
{ z(1− α/2)

td(1− α/2)

}2
, (20)

which is (19) with a normal quantile in the numerator in place of the t quantile. This replacement yields a

smaller ratio, smaller effective sample size, wider confidence intervals and higher coverage.

4 Simulation Study

We simulate one population for each parameter configuration, then implement sampling designs, analyze

the data and summarize results.
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4.1 Simulating the Population

First, we create a population of size N = 10, 000 with H = 4 strata. In the hth stratum there are Kh = K

clusters, each of size c, and Nh units with Nh = c ·Kh. We allow different sampling fractions in different

strata. In separate runs, c = 1, 3, 5 or 7. The expected population proportion, E(Ȳ ) = θ, is specified for

each simulation, where Ȳ is the population mean of the binary attribute. Scenarios jointly specify the

dependence on the stratum-specific samples nh and population proportions of the form

θh = θ + b · (h− 2.5) ensuring that θ̄h = θ for various choices of b including b = 0 (see Section 4.2).

A “success” or “failure,” Yhki ∈ {0, 1}, for unit i in cluster k in stratum h, is generated from the model,

[phk | θh] ∼ Beta
(1− ρ

ρ
θh,

1− ρ
ρ

(1− θh)
)

(21)

[Yhki | phk] ∼ Bernoulli(phk).

As described in Section 4.3, parameter configurations (ρ, {θh}Hh=1, c), “scenario” and sample size n are

specified once for each simulated frame population. Here ρ is the ICC for the binary attribute, which

measures within-cluster heterogeneity when c > 1.

4.2 Simulating the Sampling Design

After generating the population, it is sampled R = 10, 000 times for each simulation configuration. As

discussed in the introduction, the sampling design is a single-stage stratified SRS sample of all-or-none

clusters of identical size, where the objective is inference about the proportion Y/N .

An alternative to generating each population once and sampling repeatedly is to generate 10, 000

populations and sample each once. Our approach is consistent with the design-based philosophy prevalent

among survey practitioners, in which the finite population is viewed as fixed and all randomness is ascribed

to the sampling process. In our simulations, the large number of frame populations generated for different

factorial combinations prevent anomalous characteristics in any single frame population from distorting the

results.
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With f = n/N the overall sampling fraction, and fh = nh/Nh the stratum-specific fractions, for

h = 1, . . . , 4, we study four scenarios:

Scenario C: θh ≡ θ, fh ≡ f .

Scenario I: fh increases as θh increases.

Scenario D: fh decreases as θh increases.

Scenario H: the relation between fh and θh is quadratic and concave.

For example, if θ = 0.3, c = 1, and the sampling fraction f is such that n = 80, then under Scenario C

the vector of stratum sample sizes is n = (20, 20, 20, 20), and θ = (θ1, . . . , θ4) = (0.3, 0.3, 0.3, 0.3);

under Scenario D it is n = (28, 22, 18, 12), θ = (0.1875, 0.2625, 0.3375, 0.4125). With no clustering,

scenario C closely resembles a SRS design. By contrast, scenario D yields large variability among stratum

sample sizes. For some simulation configurations, rounding of stratum sample sizes may cause actual total

sample sizes to differ slightly from the nominal n. For more details on rounding and other aspects of the

simulation design, see Appendix C.

4.3 Factorial Design

Each simulation parameter can take on several values, creating a factorial design shown in the following

table. The combinations number 648, after excluding configurations with n ≤ 50 and c ≥ 5 because of

problems such as undefined stratum sample variances due to strata with one or zero clusters.

Factor Symbol Levels
Cluster size c 1, 3, 5, 7

Sample size∗ n 30, 40, 50, 84, 196, 280
Scenario – C, I, D, H

Expected Proportion θ = E(Y/N) 0.05, 0.10, 0.30
Intra-Cluster Correlation ρ 0.001, 0.10, 0.25

∗Sample sizes n ≤ 50 excluded when c ≥ 5. Case c = 1 represents no clustering.

For each element in the factorial design, R = 10, 000 replicated samples are drawn. In each simulated

sample for which V̂ (p̂) 6= 0, the coverage indicator and interval width are computed for the Wald and seven
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other 95% CI methods described in Section 2, using both neff and n̂eff , where the latter is computed from

three different variance estimates: the purely design-based estimator (13), the modification by the

reciprocal of the effective sample size factor of Dean and Pagano (2015) in (20), or the Kish-type formula

(15) derived from superpopulation model assumptions. Empirical coverage in each simulation

configuration is the percentage of replicate samples with V̂ (p̂) 6= 0 for which the interval contains the true

proportion Y/N . Non-coverage is (100 - coverage)%. Width is computed as the average of widths of CIs

intersected with [0, 1] (needed for Wald, Wilson, and Agresti-Coull).

5 Simulation Results

We present results on CI performance in four steps. First, in Section 5.1 we compare coverage of the Wald

CI with coverage of the other CI methods. The clearly inferior CI coverage of Wald eliminates this method

from further consideration. Second, we summarize the performance of methods other than Wald across all

simulation configurations, first with design-based estimated effective sample size and then with true

effective size neff . Third, in Section 5.2, we compare the Dean and Pagano estimated effective sample size

(20) with the Kish-type estimates n̂∗eff in (18). Finally, in Section 5.3, we compare the relative merits of the

seven non-Wald intervals based on n̂∗eff , with results for the Logit method discussed separately in

Section 5.3.1, and illustrated in the Online Supplement.

5.1 Coverage with design-based sampling variance estimate

We first examine in Figure 1 seven intervals (Wald, Uniform, Clopper Pearson, Wilson, Agresti-Coull, and

Arcsine Square Root) computed from estimated (in the left panel) or true (in the right panel) effective

sample size, given by (14) and (12), respectively. Figure 1 plots coverage, based on this design-based

estimate of design effect, against “effective expected number of successes” (neff · θ), a feature which

increases with n/c and θ. There are 7 plotted points for each element of our factorial design, plotted red for

Wald intervals and gray for the others, and each point summarizes 10, 000 samples.

All intervals with estimated effective sample size under-cover, especially for small neff · θ, but the lesser

16
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Figure 1: Left Panel: Coverage of seven CIs (all of those in Section 2 except Logit) using effective sample
size estimate (14), plotted against effective expected number of successes (neff · θ, plotted on the log scale),
for each simulation configuration, where the red points correspond to the Wald interval and the gray points
correspond to all other intervals. Right Panel: Analogous to left panel, using the true effective sample size
(12) instead of (14).

coverage of the Wald CI relative to others is evident (Fig. 1, left panel). For CIs other than Wald,

undercoverage is rarely a major problem when the true design effect is known. The Wald interval does very

poorly even when the design effect is known (in the right panel), and Figure 1 sufficiently justifies

eliminating it from consideration.

The format of plots in Figure 2 is the same as that of Figure 1, but with coverage plotted for only one CI

method in each row, and the Wald interval excluded. All 6 CIs tend to be conservative when based on the

true design effect (right panel of Fig. 2). The Clopper-Pearson interval with estimated neff tends to

over-cover, at the expense of very large width (see Section 5.3). For all methods, coverage tends to the

nominal as neff · θ increases, but convergence can be slow. (Note the log scale on the horizontal axis.)

In practice the sampling variance is unknown, and comparison of the left and right panels of Figure 2

suggests that variance estimation is the primary source of undercoverage in CIs from complex surveys, so

that improving the estimate of variance (and hence of the effective sample size) will improve CI coverage.
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Figure 2: Left Panels: Coverage of 6 CIs using design-based effective sample size estimate, plotted against
effective expected number of successes (neff · θ, plotted on the log scale), for each simulation configuration.
JeffPr refers to Jeffreys interval, UniPr to Uniform, ClPe to Clopper-Pearson, Wils to Wilson, AgCo
to Agresti-Coull, and Assqr to Arcsine Square Root interval. Solid line at 95 represents nominal coverage,
and dashed line at 93.5 undercoverage by 1.5%. Right panels: Analogous to left panels, using the true
effective sample size (12) instead of (14)

18



5.2 Adjustments & Alternatives to Design-Based Estimates

Motivated by the good coverage properties of all CIs other than Wald with true effective sample size in the

right panels of Figure 2, the next subsection directly examines the improved mean-squared error (MSE)

achieved by estimating sampling variance with (15) in place of (13). We compare in subsection 5.2.2 the

performance of non-Wald intervals using the Dean-Pagano modification to the estimated effective sample

size versus CIs based on formula (15).

5.2.1 Properties of the alternative design effect estimator

The Kish-type formula (15) exploits a superpopulation model. Although the design-effect estimator in (14)

is essentially unbiased, the corresponding effective sample size estimator is not. The effective sample size

estimator (18) corresponding to the model-based variance estimator (15) has some biases that vary

systematically with cluster size θ and ICC ρ. Table 1 displays within the simulation design of Section 4, for

n = 200, the simulation-averaged ratio of the estimated effective sample size (18) divided by the true

design effect (12) averaged across scenarios.

The biases of estimated effective sample size (12) turn out to be very slight when ρ = 0.1 (not shown) or

when c = 1, are largest when θ = 0.1, are negative by up to 22% when ρ = .001 and c ≥ 3, and can be

quite positive when ρ = 0.25 and θ = 0.1. These biases are tolerable because the MSE of the effective

sample size estimator (18) is low compared to that of (14).

The biases in estimated effective sample size illustrated in Table 1, as well as those not shown, are

generally associated with upward bias in the corresponding design-effect estimates (18). However, these

biases in estimating design effect and effective sample size in the Kish method are generally accompanied

by a notable decrease in RMSE by comparison with the purely design-based estimators. Table 2 shows the

ratio of RMSE for estimated effective sample size (18) over the RMSE of the corresponding design-based

estimate in (14) for ICC ρ = 0.25 and n = 200, by Scenario. Parameter combinations with c = 1 are not

shown, since in those cases the Kish and design-based estimators are algebraically equivalent. The table

shows the considerable improvements in RMSEs when using the Kish method relative to the design-based

method. For other values of n, the pattern is the same as that shown, with RMSE ratios often even smaller
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ρ = .001 ρ = 0.25

Clus-Size θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.1 θ = 0.2 θ = 0.3

c=1 1.07 1.02 1.01 1.07 1.02 1.01
c=3 0.98 0.93 0.90 1.16 1.03 1.00
c=5 0.89 0.86 0.86 1.27 1.02 1.02
c=7 0.82 0.78 0.79 1.33 1.10 1.00

Table 1: Average ratio of estimated effective sample size (18) divided by true ef-
fective sample size, based on 10, 000 replications and averaged across Scenarios,
with N = 104, n = 200.

(many in the range 0.3–0.7). The favorable performance of the Kish method in confidence interval

construction appears to be due to its reduced RMSE in combination with its positive biases in estimated

design effect which increase with cluster size.

θ = 0.1 θ = 0.2 θ = 0.3

Scen. c=3 c=5 c=7 c=3 c=5 c=7 c=3 c=5 c=7
C 0.92 0.88 0.85 0.94 0.90 0.86 0.94 0.90 0.87
I 0.89 0.83 0.83 0.84 0.83 0.77 0.82 0.78 0.72
D 0.83 0.83 0.73 0.68 0.54 0.58 0.58 0.49 0.44
H 0.88 0.85 0.81 0.88 0.81 0.79 0.91 0.82 0.81

Table 2: Ratio of RMSE for estimated effective sample size (18) over RMSE for
design-based estimated effective sample size(14) for ICC ρ = 0.25 and n = 200,
by Scenario, based on N = 104 and 10,000 replications.

It should be noted that in the exhibits of this subsection, as elsewhere in the paper’s displays of simulation

results, a new and independent random population of size N is generated for each simulation configuration.

Accordingly, each cell in the tables and point in the figures has inherent variability in repeated runs due to

finite population differences. Nevertheless, the patterns described in the paper are fairly consistent and

stable and support general conclusions.

5.2.2 Comparison of Kish-type formula CIs to Dean-Pagano CIs

We now discuss CI results for the Kish-formula (15)–(18) method of estimating effective sample size –

which we refer to as the Kish neff method – versus the Dean and Pagano (DP) method applying the

modification (20) to the design-based effective sample size (14).
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Briefly, the two methods are broadly similar in their coverage rates, although the Kish method tends to have

slightly higher coverage. When there is no clustering ( i.e., c = 1), undercoverage is not a big problem and

the Kish method is essentially the same as the design-based method. For c = 3, undercoverage is frequent

when using the design-based method, and both the DP modification and the Kish methods reduce it to a

similar extent. In configurations with c ≥ 3, there are slightly more configurations aggregated across the

six non-Wald intervals considered in this subsection in which DP coverage falls below 93.5% , 94% or

94.5% as compared with Kish, and this comparison holds for almost every combination of θ and ρ when

c > 1 and n > 50 (tables shown in the Online Supplement).

For large cluster-size c and ICC ρ, undercoverage for either the DP or Kish method is common. The most

problematic setting is c = 7, and Figure 3 contrasts the methods in this case. In each panel labeled by a CI

method, the ratio of average interval lengths with effective sample size estimated by the Kish method over

the DP method is plotted against the non-coverage ratio under the two neff methods. For all CI types,

most points have one ratio > 1 and one < 1. Among points with width ratios > 1 and non-coverage ratios

< 1, the cyan ones for which DP coverage was below nominal can be viewed as favorable for the Kish

method, and perhaps so are the black points with width-ratios < 1 and noncoverage ratios > 1 and

above-nominal DP coverage. The points in the lower-left quadrant in each panel are very favorable to the

Kish method because they reflect settings in which Kish-method coverage is larger than for DP while width

is smaller. Notably, none of the CI types show any upper-right quadrant configurations in which the DP

method would have smaller average width but larger coverage. Similar pictures for c = 3 and c = 5,

included in the Online Supplement, show a similar pattern but not quite so strikingly favorable to the Kish

neff method over the DP method.

Figure 4 presents another view of the coverage of the same six CI types as Figure 3 computed with the Kish

versus DP neff method. In each of these 6 panels, which correspond to the case c = 7, the middle range of

DP points with near-nominal (94%–96%) coverage correspond to a range 94%–97.5% of Kish-method

coverage. This observation is consistent with the width-comparisons from Figure 3. Analogous figures for

the cases c = 3, 5 are presented in the Online Supplement.

Both the DP and the Kish methods have increased width over all (non-Wald) types compared to the

design-based method of estimating sampling variance and neff . In fact, for the six intervals considered in
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Figure 3: Comparison of metrics for Kish versus DP neff methods, for each of six CIs under 108 simulation
settings with c = 7. Plotted points are: y = 100 times ratio of widths for Kish neff method over DP, versus
x = 100 times ratio of non-coverage for Kish neff method over non-coverage for DP. Points with below-
nominal DP coverage plotted in cyan. Vertical line indicates coverage ratio 1, horizontal line width-ratio 1.
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Figure 4: Coverage for 6 CI types, scaled by 100, for the Kish and DP neff methods in 108 simulation
configurations with c = 7. Equal coverage is indicated by red 45◦ line, nominal (95%) coverage by black
solid lines, and extreme (93.5%) undercoverage by black dashed lines.
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this subsection, the Kish method increases width 0–41.1% with a mean increase of 6.9%, and the DP

modification increases width 0.4–50.6% with a mean of 6.8%. Figure 4 indicates the somewhat higher

coverage for the Kish versus DP method for each interval type. The increased coverage is acceptable

because the overall message from the Kish versus DP comparisons is that the Kish method makes more

effective use than DP of CI widths, with slightly better success at mitigating undercoverage in the presence

of clustering.

5.3 Comparison of Alternative Intervals

We move now to highlight relative advantages among the non-Wald CI types of Sec. 2. In this comparison,

we examine results using the Kish method (18) of neff estimation. Considering first the rather good

coverage properties of these CI types based on true neff in the rightmost panels of Figure 2, the coverage

performance of the Jeffreys- and Uniform-prior and Wilson intervals seem most favorable to us:

Clopper-Pearson is excessively conservative, with systematically above-nominal coverage also for

Agresti-Coull and Arcsine Square Root. When neff is estimated, the leftmost panels in Figure 2 show

Clopper-Pearson to be overly conservative, and Arcsine Square Root erratic and dominated across the

range of θ · neff by the Jeffreys-prior interval, but it is rather hard to choose among the Jeffreys, Uniform,

Wilson and Agresti-Coull alternatives. In the presence of extensive clustering (c = 7), Figure 4 shows

somewhat more detail, but also does not provide a compelling reason to prefer any of the Jeffreys,

Uniform, Wilson and Agresti-Coull to the others, although Jeffreys has a slightly wider range of coverage

and Agresti-Coull a more systematically conservative tendency than the others in this group.

Width and coverage are shown simultaneously for the six CI types in a further pictorial display in Figures 5

and 6. In these, we plot the ratio of each interval width to that of Clopper-Pearson (since that CI is typically

the widest and has highest coverage) versus the non-coverage, plotting a separate panel for each level of

clustering and within each c, for each overall proportion θ. Points in the lower left of each panel have high

coverage and small widths. The definition of relative width removes much of the dependence on θ and n.

Figure 5 contains the three θ panels for c = 1, and Figure 6 for c = 5. The other cases c = 3, c = 7 can be

found in the Supplement.
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Figure 5: Relative width (ratio of width of Jeffreys, Uniform, Clopper-Pearson, Wilson, and Agresti-Coull
interval to that of the Clopper-Pearson, multiplied by 100) vs non-coverage for 72 configurations with no
clustering (c = 1) and (a) θ = 0.05, (b) θ = 0.1, (c) θ = 0.3. The solid vertical line represents nominal
non-coverage. The dotted line, given for reference, represents undercoverage of 1.5 percentage points.

Some patterns are common to all these plots: the Agresti-Coull and Clopper-Pearson tend to be the widest

for θ = 0.05, 0.1, and also tend to have higher coverage, typically overcovering. The other intervals are
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Figure 6: Ratio of width of Jeffreys, Uniform, Clopper-Pearson, Wilson, Agresti-Coull and Arcsine Square
Root to that of the Clopper-Pearson, multiplied by 100, plotted vs non-coverage for 36 simulation config-
urations with c = 5 and (a) θ = 0.05, (b) θ = 0.1, (c) θ = 0.3. The solid vertical line represents nominal
non-coverage. The dotted line, given for reference, represents undercoverage of 1.5 percentage points.

comparable to each other in coverage, with the Jeffreys the shortest, though having slightly more cases of

marked undercoverage, especially for ICC ρ of 0.25. For θ = 0.3, the Clopper Pearson is the widest and
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most conservative. The other intervals are comparable in coverage, with the Wilson and Uniform tending to

be the shortest.

In Figure 5 there is a general tendency towards over-coverage and few cases of pronounced undercoverage.

Panels (a) and (b), respectively for θ = .05 and 0.1, show that the Clopper-Pearson (CP), Agresti-Coull

(AC), Jeffreys, and Arcsine Square Root intervals all have many over-coverage events in the region where

non-coverage is less than 4%, but CP and AC are widest in this region, achieving over-coverage at the cost

of increased width. AC can be wider than CP for θ = 0.05. Among other CIs, Jeffreys strikes a good

width/coverage trade-off, but not in all situations (showing marked undercoverage θ = 0.1 and n = 50).

The Wilson and Uniform CIs are relatively well-calibrated, though there are a few instances of

non-coverage beyond 7% for θ = 0.05 and n = 30, most of them for the Uniform. For θ = 0.3, the Wilson

and the Uniform intervals tend to be shortest, with Jeffreys shortest for θ = 0.05 and θ = 0.1.

In Figure 6, many of the same comments apply, including the excessive width of Agresti-Coull and

Clopper-Pearson for θ = .05, the well-calibrated Uniform and Wilson, the short but occasionally severely

undercovering Jeffreys, and somewhat erratic Arcsine Square Root.

The most pronounced undercoverage for all intervals occurs when c = 7 and ρ = 0.25. Even the

Clopper-Pearson undercovers there, although not more than 1.5%.

Some of the width relationships among interval widths can be proved analytically. Specifically, both the

Uniform and the Jeffreys intervals are contained in the Clopper-Pearson interval (see Brown et al., 2001).

A proof is supplied in Appendix A. Though the proof does not cover the relation between the Jeffreys and

the Uniform, we have verified numerically that for α = 0.10, 0.05, 0.01 and n = 2, . . . , 10, 000 the Jeffreys

interval’s lower endpoint is always smaller than that of the Uniform’s when the binomial count Y < n/2.

That is, qbeta(α/2, y + 1/2, n− y + 1/2) < qbeta(α/2, y + 1, n− y + 1) for y < n/2.

5.3.1 The Logit interval (see the Online Supplement)

In our simulations, the Logit interval shows a similar performance to the Agresti-Coull, but in some cases

was extremely wide, as shown in Figures 7-11 of the Online Supplement. Figure 7 in the Supplement is
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analogous to Figure 2 in the paper but includes also the Logit interval. Figures 8-11 in the Supplement are

analogous to Figure 5-6 in the main paper, covering the cases c = 1, 3, 5 and 7, but plotting points

corresponding to the Logit in cyan, the Agresti-Coull in blue, the Clopper-Pearson in black, for reference,

and all others in gray, to highlight the similar pattern of behavior of the Agresti-Coull and Logit. The

strikingly high widths in some cases, seen mostly for θ = 0.05 and sometimes for θ = 0.01, are consistent

with the Brown et al. (2001) finding that the Logit interval is “unnecessarily long” in the binomial case.

6 Conclusions and Future Work

We have seen that the Wald CI is badly flawed for estimating proportions in complex surveys due to its

severe undercoverage in a variety of situations. Improving the estimation of sampling variance will not

salvage the Wald interval, which performs poorly even when the true sampling variance is known. Since

the alternative methods studied are straightforward to implement and clearly superior, the Wald approach

should not be used, especially not in complex surveys.

For the other intervals considered, notable undercoverage can also occur when there is clustering.

Improving the estimation of sampling variance by using simple superpopulation model assumptions can

greatly enhance the performance of these intervals. This approach worked well throughout our factorial

design, better than the modification of effective sample size by Dean and Pagano (2015), and can be

applied more generally. This approach to improving coverage by improving estimation of the effective

sample size is perhaps our main contribution.

Among the CI methods studied, there was no clear winner with respect to coverage or length. Our

comparisons of coverage and lengths suggest the Wilson, Uniform, and Jeffreys intervals tended to have

shorter lengths (the former two especially for larger θ such as θ = 0.3 and the latter for smaller θ), and

coverage closest to nominal. The Clopper-Pearson interval, recommended by Korn and Graubard (1999)

and by Dean and Pagano (2015) in cases with high clustering and extreme proportions, tends to be much

longer, and should only be used if conservative coverage is paramount.

Our method of estimating the effective sample size has been developed and tested for the
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Horvitz-Thompson estimator under stratified one stage sampling of clusters of equal sizes. The appendix

extends the method to unequal cluster sizes (equation 24), and to the case where the weights might not be

inverse inclusion probabilities, but design-consistent variance estimates of the stratum totals are available

(equation 25) and may come, for instance, from random groups, Balanced Repeated Replication (Wolter,

1985), jackknife or bootstrap (Shao and Tu 1995). Future research will extend and test the method using

other designs and other types of estimators. The ratio estimator or combined ratio estimator will be

particularly relevant, as these are frequently used in surveys to achieve gains in precision in estimating

proportions when the cluster sizes are not equal or when a good auxiliary variable is available (see for

instance, Lohr, 2010). We expect that under moderate misspecification of the sampling design or the model

the method will still perform well. Further research about the impact of model misspecification is

recommended. In particular, our simulations do not test the performance of the method in settings with

cross-cluster correlation. Sampling variance estimators can also be developed using the same ideas under

other super-population model assumptions, e.g., allowing for other correlation structures, but care must be

taken that the number of parameters to be estimated is not too large given the sample size.

In the case where a data user is only provided with replicate weights in a public-use data file, with no

information about clustering, our method of estimating sampling variances will not apply. Even when our

method cannot be used, a strong recommendation still emerges from our simulations–that the Wald interval

not be used, and be replaced by the preferred non-Wald method, where the best available sampling variance

estimate is used to compute the effective sample size and effective sample count as described in Section

2.8, and the effective sample count and effective sample size are then used in the confidence interval

formulas (2.2)- (2.6). Possible variance estimators include those based directly on supplied

weight-replicates, or random-group or jackknife estimators in which weights and replicates are used to

define the groups, or others such as bootstrap variances in complex surveys when those can be justified as

consistent (see, for instance, Rust and Rao 1996 for a review of replication techniques for variance

estimation in complex surveys).

Several other lines of investigation of CI performance for proportions based on complex survey data

deserve attention. Coverage of all of the intervals tends to fall below nominal as cluster sizes increase, and

variants of these intervals, or more urgently of the underlying estimation of effective sample size, which

mitigate this tendency are needed. In particular, a fully Bayesian approach with weakly informative prior
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distributions, which incorporates complex design features like clustering and stratification through a

hierarchical Bayes model appropriate for a binary outcome, deserves consideration. We did not assess this

approach, since we confined attention to simple computational approaches that are more readily

implemented in ACS-type settings. Indeed, further research is needed to confirm that any method performs

well consistently across designs with widely varying (non-constant) cluster sizes and other sorts of

inhomogeneity, and it is in such settings where we believe the model-based approach introduced here

shows greatest promise.
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APPENDIX

A Ordering of Clopper-Pearson, Jeffreys, and Uniform Intervals

Theorem: Let [LJ(X,n), UJ(X,n)], [LUNI(X,n), UUNI(X,n)], [LCP (X,n), UCP (X,n)] be the lower

and upper bounds of the Jeffreys, Uniform, and Clopper-Pearson Intervals, respectively. Then

[LJ(X,n), UJ(X,n)] ⊂ [LCP (X,n), UCP (X,n)]

[LUNI(X,n), UUNI(X,n)] ⊂ [LCP (X,n), UCP (X,n)]

Proof: The result follows from the fact that if f and g are densities for random variables W and Z with

cdf’s F and G, respectively, such that f/g is increasing, then W is stochastically bigger then Z. To show

this, write
d

du
[F (u)−G(u)] = g(u)(

f(u)

g(u)
− 1).

Because the ratio f(u)/g(u) is increasing, the derivative on the left hand side can only change from

negative to positive. Hence the function F (u)−G(u) can have only one local minimum, and its value is

zero at∞ and −∞. Hence F (u)−G(u) ≤ 0. The Jeffreys, and Clopper-Pearson endpoints can all be

expressed from the quantiles of the beta distribution, as described in Section 2. The result follows by taking

the ratios of the beta densities for each of the interval endpoints and showing that each is decreasing or

increasing. For instance, in terms of the Beta function β(a, b)

f(u) =
dbeta(u,X + 1/2, n−X + 1/2)

dbeta(u,X, n−X + 1)
=
β(X + 1/2, n−X + 1/2)

β(X,n−X + 1)
{u/(1− u)}1/2

It is easy to check that f ′(u) > 0, so f(u) is increasing. This implies

LJ(X,n) > LCP (X,n).

The relations between the other endpoints are proved analogously. 2

34



B Justification of Model-based Estimation Formulas

Consider the survey-weighted estimator of Y applicable in survey settings with stratification and

single-stage cluster sampling, but not necessarily equal-sized clusters or stratumwise SRS single-stage

cluster sampling. In terms of single and joint inclusion probabilities πhki, πhki,hk′j , the general

survey-weighted (Horvitz-Thompson) estimator of Y becomes

Ŷ = Ŷ HT =

H∑
h=1

∑
k∈Sh

∑
i∈Ckh

Ykhi/πhki (22)

and a general expression for the anticipated variance (Isaki and Fuller, 1982), where the expectation is

taken with respect to both the sampling design and the super population model, is

AV(Ŷ HT ) =

H∑
h=1

∑
k,k′∈Uh

∑
i∈Ckh, j∈Ck′h

πhki,hk′j − πhkiπhk′j
πhki πhk′j

[
E(Yhki)E(Yhk′j) + Cov(Yhki, Yhk′j)

]
(23)

where Uh is the set of clusters in stratum h of the population.

Our blanket assumption is that

(A.o) clusters are sampled all-or-none

which implies that the single and double inclusion probabilities are constant over clusters, so we drop the

indices i, j from their notation. Let Mkh denote the number of units i in cluster Ckh. Then the extra

assumptions underlying the formula simplifications in Sections 3.1 and 3.2 are that all Mkh are equal to

c and that

(A.iv) the single and pairwise inclusion probabilities are equal to those of stratified SRS cluster sampling:

πhk =
nCh
Kh

, πhk,hk′ =
nCh (nCh − 1)

Kh(Kh − 1)
for k ∈ Uh, k′ 6= k

Under assumptions (A.o)-(A.ii) and (A.iii), the mean and variance of the cluster-attribute

Ykh+ =
∑

i∈Ckh
Ykhi are given by

E(Ykh+) = Mkh τh , V (Ykh+) = {Mkh + Mkh(Mkh − 1)ρ}σ2
h
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Then formula (23) simplifies to

AV(Ŷ HT ) =
H∑
h=1

τ2
h

Kh∑
k,k′=1

πhk,hk − πhk πhk′

πhk πhk′
MkhMk′h +

H∑
h=1

Kh∑
k=1

1− πhk
πhk

{Mkh +Mkh(Mkh−1)ρ}σ2
h

(24)

However, in many real surveys where the weights wi are based on calibration, raking, nonresponse

adjustment and/or weight-trimming steps, the fiction that these weights are inverse inclusion probabilities

cannot be maintained, and therefore anticipated-variance formulas like (23) must be replaced by some

off-the-shelf design-consistent variance estimation method such as random-groups or Balanced Repeated

Replication (Wolter 1985), jackknife or bootstrap (Shao and Tu 1995). Let V̂h(z) = V̂h({zk}k) denote the

estimated variance in stratum h by any of these methods applicable to the total of a cluster-level attribute zk

for k ∈ {1, . . . ,Kh}. Then, under assumptions (A.i),(A.ii) and (A.iii), the anticipated variance AV in (23)

or (24) is estimated by

ÂV(Ŷ HT ) =
H∑
h=1

τ̂2
h V̂h({Mkh}k) +

H∑
h=1

σ̂2
h

∑
k∈Sh

Mkh

πkh

(1− πkh
πkh

)
(1 + (Mkh − 1)ρ̂) (25)

where τ̂h, σ̂
2
h, ρ̂ are design-based estimators derived from sample-weighted moments. Natural formulas

for such estimators are:

1− ρ̂ =
n−H
n

·
∑H

h=1

∑
k∈Sh

∑
i,j∈Ckh

(Yhki − Yhkj)2/2∑H
h=1 τ̂h(1− τ̂h)

∑
k∈Sh

Mkh (Mkh − 1)

σ̂2
h =

1

nh − 1

∑
k∈Sh

∑
i∈Ckh

(Yhki − τ̂h)2 , τ̂h =
1

nh

∑
k∈Sh

Yhk+

where nh =
∑

k∈Sh
Mkh. In a complex survey with stratification and take-all clusters, formula (25)

provides a general variance estimator as part of our proposed design-effect and CI estimators. If

assumption (A.iv) also holds, then these variance-estimation formulas take the explicit form:

ÂV
∗
(Ŷ ) =

H∑
h=1

Kh − nCh
nCh

{
τ̂2
h

Kh

nCh − 1

∑
k∈Sh

(Mkh−
nh
nCh

)2 + σ̂2
h

Kh

nCh

(
nh (1− ρ̂)+ ρ̂

∑
k∈Sh

M2
kh

)}
(26)

where τ̂h, σ̂2
h and ρ̂ are as above. Then the expressions for estimated design effect and effective sample size

are as in (18).
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Note that in the further restricted setting of Section 3.2, where Mkh = c is constant, formula (26) reduces

to (15), which in the main text we denote as V̂ar
∗
(Ŷ ) for simplicity of exposition. This formula would

imply the usual Kish formula Deff= 1 + ρ̂(c− 1) under the further assumption of proportional allocation

with cluster sample sizes nCh to stratum h, if σ̂2
h were changed to a variance assumed not to depend on

stratum. With proportional allocation, the design-based estimated sampling variance V̂ar(Ŷ ) in (13) is

essentially equal to V̂ar
∗
(Ŷ ), the only difference being the Kh − 1 terms instead of Kh in the denominators

of stratum sample variances in (13).

The idea of this Section has been that approximately design-based estimators of the variance of survey-

weighted estimates of proportions, with anticipated variance calculated on the basis of slightly misspecified

models expressed in terms of a few unknown parameters to be estimated, can be an effective and

numerically stable way to produce estimated design effects.

C Additional Simulation Details

Patterns of joint variation of stratum sampling fractions fh = nh/Nh and stratum proportions θh.

θh = θ
(

1 + b0 (h − H + 1

2
)
)

, f̄h ∝ θa1h (2θ − θh)a2 , 1 ≤ h ≤ H (27)

Initially we consider four patterns of parameters for the pair of H-vectors:

C: b0 = a1 = a2 = 0 level θ’s, f̄ ’s

I: b0 = 3/(4H − 4), a1 = 1, a2 = 0 ↗ θ’s, ↗ f̄ ’s

D: b0 = 3/(4H − 4), a1 = 0, a2 = 1 ↗ θ’s, ↘ f̄ ’s

H: b0 = 3/(4H − 4), a1 = 1, a2 = 1 ↗ θ’s, ∩ shaped f̄ ’s

The purpose of the choice b0 = 3/(4H − 4) in the scenarios I, D, and H with H = 4 strata is to fix the

smallest of the ratios θh/θ as 5/8, and the largest as 11/8. Of course, other choices are possible: to set the

minimum value θ1/θ of these ratios to β0 < 1/2, fix b0 = 2(1− β0)/(H − 1). The intent was to choose

values that would allow for differences between the scenarios while avoiding extreme values that would
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lead to poorly behaved and unusual results.

Rounding of Stratum Sample Sizes

Stratum sample sizes to be calculated following the rules given above need to be rounded to become

integers and the corresponding proportions are changed to reflect the integer population and sample sizes.

Thus: with round denoting the operation of rounding a number to the nearest integer,

n = round(fN/c), then f ≡ cn/N ; then Nh = round(Nλh), λh ≡ Nh/N ;

then from the values f̄h defined by (27), nCh = round(f̄hNh/c), fh ≡ nCh c/Nh.

D R Code for Design Effect and CI Calculations

In Section 1 of the Online Supplement, we describe the use of two R (R Core Team, 2017) functions

adapted from those used in the simulations of Section 4, VarKish and CIarrFcn, and provide an

illustrated example based on simulated data. The R function VarKish calculates the design-based and

‘Kish-type’ variances for a survey-weighted total of a binary attribute Yhki in the setting of a stratified

single-stage cluster-sample (in which all units are taken from each sampled cluster). The R function

CIarrFcn encodes the calculation of all 8 types of confidence intervals studied in this paper. These

functions along with parameter values and data objects used in the illustration are contained in the

supplementary R workspace RSupp.RData, where function listings and the data objects can be found.

After explaining the inputs and outputs of the functions in successive subsections, we present a a detailed

example of the use of these functions similar to the way they were applied in the simulations.
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