Next: Kinetic Formulations and Regularity
Up: Approximate Solutions of Nonlinear
Previous: The velocity formulation
References
- 1
- P. ARMINJON, D. STANESCU & M.-C. VIALLON,
A Two-Dimensional Finite
Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flow, (1995),
preprint.
- 2
-
P. ARMINJON, D. STANESCU & M.-C. VIALLON, A
two-dimensional finite volume extension of the Lax-Friedrichs and
Nessyahu-Tadmor schemes for compressible flows, Preprint.
- 3
- P. ARMINJON & M.-C. VIALLON,
Généralisation du Schéma de
Nessyahu-Tadmor pour Une Équation Hyperbolique à Deux Dimensions D'espace, C.R. Acad. Sci.
Paris, t. 320 , série I. (1995), pp. 85-88.
- 4
- F. BEREUX & L. SAINSAULIEU,
A Roe-type Riemann
Solver for Hyperbolic Systems with Relaxation Based on Time-Dependent
Wave Decomposition, Numer. Math,. 77, (1997), pp. 143-185.
- 5
- D. L. BROWN & M. L. MINION
Performance of under-resolved two-dimensional incompressible
flow simulations, J. Comp. Phys. 122, (1985) 165-183.
- 6
- P. COLELLA & P. WOODWARD, The piecewise parabolic
method (PPM) for gas-dynamical simulations, JCP 54, 1984, pp. 174-201.
- 7
-
B. ENGQUIST & O. RUNBORG, Multi-phase computations
in geometrical optics, J. Comp. Appl. Math., 1996, in press.
- 8
- ERBES, A high-resolution Lax-Friedrichs scheme
for Hyperbolic conservation laws with source term. Application to the
Shallow Water equations. Preprint.
- 9
- K.O. FRIEDRICHS & P.D. LAX,
Systems of Conservation Equations with a Convex
Extension, Proc. Nat. Acad. Sci., 68, (1971), pp.1686-1688.
- 10
- E. GODLEWSKI & P.-A. RAVIART,
Hyperbolic Systems of Conservation
Laws, Mathematics & Applications, Ellipses, Paris, 1991.
- 11
- S.K. GODUNOV,
A finite difference method for the numerical
computation of discontinuous solutions of the equations of fluid
dynamics, Mat. Sb. 47, 1959, pp. 271-290.
- 12
- A. HARTEN,
High Resolution Schemes for Hyperbolic Conservation
Laws, JCP, 49, (1983), pp.357-393.
- 13
- A. HARTEN, B. ENGQUIST, S. OSHER & S.R. CHAKRAVARTHY,
Uniformly high order accurate essentially non-oscillatory schemes. III,
JCP 71, 1982, pp. 231-303.
- 14
- HUYNH, A piecewise-parabolic dual-mesh method for
the Euler equations, AIAA-95-1739-CP, The 12th AIAA CFD Conf., 1995.
- 15
- G.-S. JIANG, D. LEVY, C.-T. LIN, S. OSHER & E. TADMOR,
High-resolution Non-Oscillatory
Central Schemes with Non-Staggered Grids for Hyperbolic Conservation
Laws, SIAM Journal on Num. Anal., to appear.
- 16
- G.-S JIANG & E. TADMOR,
Nonoscillatory Central Schemes for
Multidimensional Hyperbolic Conservation Laws, SIAM J. Scie. Comp., to appear.
- 17
- S. JIN, private communication.
- 18
-
S. JIN AND Z. XIN, The relaxing schemes for systems of
conservation laws in arbitrary space dimensions, Comm.
Pure Appl. Math. 48 (1995) 235-277.
- 19
- B. VAN LEER,
Towards the Ultimate Conservative Difference Scheme,
V. A Second-Order Sequel to Godunov's Method, JCP, 32, (1979), pp.101-136.
- 20
- R. KUPFERMAN, Simulation of
viscoelastic fluids: Couette-Taylor flow, J. Comp. Phys., to appear.
- 21
- R. KUPFERMAN, A numerical
study of the axisymmetric Couette-Taylor problem using a fast
high-resolution second-order central scheme, SIAM. J. Sci. Comp.,
to appear.
- 22
- R. KUPFERMAN & E. TADMOR,
A Fast High-Resolution Second-Order Central Scheme for Incompressible Flow
s, Proc. Nat. Acad. Sci.,
- 23
- R.J. LEVEQUE,
Numerical Methods for Conservation Laws,
Lectures in Mathematics, Birkhauser Verlag, Basel, 1992.
- 24
- D. LEVY,
Third-order 2D Central Schemes for Hyperbolic Conservation
Laws, in preparation.
- 25
- D. LEVY & E. TADMOR,
Non-oscillatory Central
Schemes for the Incompressible 2-D Euler Equations,
Math. Res. Let., 4, (1997), pp.321-340.
- 26
- D. LEVY & E. TADMOR,
Non-oscillatory boundary treatmentfor staggered central schemes,
preprint.
- 27
- X.-D. LIU & P. D. LAX, Positive Schemes for Solving
Multi-dimensional Hyperbolic Systems of Conservation Laws, Courant
Mathematics and Computing Laboratory Report,
Comm. Pure Appl. Math.
- 28
- X.-D. LIU & S. OSHER,
Nonoscillatory High Order Accurate
Self-Similar Maximum Principle Satisfying Shock Capturing Schemes I, SINUM, 33,
no. 2 (1996), pp.760-779.
- 29
- X.-D. LIU & E. TADMOR,
Third Order Nonoscillatory
Central Scheme for Hyperbolic Conservation Laws, Numer. Math., to appear.
- 30
- H. NESSYAHU, Non-oscillatory second order central type
schemes for systems of nonlinear hyperbolic conservation laws,
M.Sc. Thesis, Tel-Aviv University, 1987.
- 31
-
H. NESSYAHU & E. TADMOR, Non-oscillatory Central
Differencing for Hyperbolic Conservation Laws, JCP, 87, no. 2 (1990), pp.408-463.
- 32
- H. NESSYAHU, E. TADMOR & T. TASSA,
On the convergence
rate of Godunov-type schemes, SINUM 31, 1994, pp. 1-16.
- 33
-
S. OSHER & E. TADMOR, On the Convergence of Difference
Approximations to Scalar Conservation Laws, Math. Comp., 50, no. 181 (1988), pp.19-51.
- 34
-
P. L. ROE, Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes, JCP, 43, (1981), pp.357-372.
- 35
-
A. ROGERSON & E. MEIBURG, A numerical study of the
convergence properties of ENO schemes, J. Sci. Comput., 5, 1990,
pp. 127-149.
- 36
-
O. RUNBORG, Multiphase Computations in Geometrical Optics,
UCLA CAM report no. 96-52 (1996).
- 37
-
V. ROMANO & G. RUSSO,
Numerical solution for hydrodynamical
models of semiconductors, IEEE, to appear.
- 38
- A.M. ANILE, V. ROMANO & G. RUSSO,
Extended hydrodymnamical model of carrier transport in semiconductors,
Phys. Rev. B., to appear.
- 39
- F. BIANCO, G. PUPPO & G. RUSSO,
High order central schemes for hyperbolic systems of conservation laws,
SIAM J. Sci. Comp., to appear.
- 40
-
R. SANDERS, A Third-order Accurate Variation Nonexpansive Difference
Scheme for Single Conservation Laws, Math. Comp., 41 (1988), pp.535-558.
- 41
-
R. SANDERS R. & A. WEISER,
A High Resolution Staggered Mesh Approach for
Nonlinear Hyperbolic Systems of Conservation Laws, JCP, 1010 (1992), pp.314-329.
- 42
-
P. K. SWEBY,
High Resolution Schemes Using Flux Limiters for Hyperbolic
Conservation Laws, SINUM, 21, no. 5 (1984), pp.995-1011.
- 43
-
C.-W. SHU, Numerical experiments on the accuracy of ENO
and modified ENO schemes, JCP 5, 1990, pp. 127-149.
- 44
-
G. SOD, A survey of several finite difference methods
for systems of nonlinear hyperbolic conservation laws, JCP 22,
1978, pp. 1-31.
- 45
-
E. TADMOR & C.C. WU,
Central Scheme for the Multidimensional MHD
Equations, in preparation.
- 46
-
P. WOODWARD & P. COLELLA, The numerical simulation of
two-dimensional fluid flow with strong shocks, JCP 54, 1988,
pp. 115-173.
Eitan Tadmor
Mon Dec 8 17:34:34 PST 1997