Next: About this document
Up: Approximate Solutions of Nonlinear
Previous: The isentropic equations
References
- 1
-
C. BARDOS, F. GOLSE & D. LEVERMORE, Fluid dynamic limits of
kinetic equations II: convergence proofs of the Boltzmann equations,
Comm. Pure Appl. Math. XLVI (1993), 667-754.
- 2
-
Y. BRENIER, Résolution d'équations
d'évolution quasilinéaires en dimension N d'espace
à l'aide d'équations linéaires en dimension N+1,
J. Diff. Eq. 50 (1983), 375-390.
- 3
-
G.-Q. CHEN, Q. DU & E. TADMOR, Spectral viscosity approximation to
multidimensional scalar conservation laws, Math. of Comp. 57 (1993).
- 4
-
B. COCKBURN, F. COQUEL & P. LEFLOCH,
Convergence of finite volume
methods for multidimensional conservation laws, SIAM J. Numer.
Anal. 32 (1995), 687-705.
- 5
-
C. CERCIGNANI, The Boltzmann Equation and its Applications,
Appl. Mathematical Sci. 67, Springer, New-York, 1988.
- 6
-
G.-Q. CHEN,
The theory of compensated compactness and the system of
isentropic gas dynamics, Preprint MCS-P154-0590, Univ.
of Chicago, 1990.
- 7
-
R. DIPERNA, Convergence of the viscosity method for isentropic
gas dynamics, Comm. Math. Phys. 91 (1983), 1-30.
- 8
-
R. DIPERNA, Measure-valued solutions to conservation laws,
Arch. Rat. Mech. Anal. 88 (1985), 223-270.
- 9
-
R. DIPERNA & P. L. LIONS, On the Cauchy problem for Boltzmann
equations: Global existence and weak stability, Ann. Math. 130 (1989),
321-366.
- 10
-
R. DIPERNA & P.L. LIONS, Global weak solutions of Vlasov-Maxwell
systems, Comm. Pure Appl. Math. 42 (1989), 729-757.
- 11
-
R. DIPERNA, P.L. LIONS & Y. MEYER,
regularity of velocity averages,
Ann. I.H.P. Anal. Non Lin. 8(3-4) (1991), 271-287.
- 12
-
P. G´ERARD, Microlocal defect measures, Comm. PDE 16 (1991),
1761-1794.
- 13
-
F. GOLSE, P. L. LIONS, B. PERTHAME & R. SENTIS,
Regularity of the moments of the solution of a transport equation,
J. of Funct. Anal. 76 (1988), 110-125.
- 14
-
Y. GIGA & T. MIYAKAWA, A kinetic
construction of global solutions of first-order
quasilinear equations, Duke Math. J. 50 (1983), 505-515.
- 15
-
C. JOHNSON & A. SZEPESSY,
Convergence of a finite element methods for a
nonlinear hyperbolic conservation law, Math. of Comp. 49 (1988), 427-444.
- 16
-
C. JOHNSON, A. SZEPESSY & P. HANSBO, On the convergence of
shock-capturing streamline diffusion finite element methods for hyperbolic
conservation laws, Math. of Comp. 54 (1990), 107-129.
- 17
-
Y. KOBAYASHI, An operator theoretic method for solving
, Hiroshima Math. J. 17 (1987) 79-89.
- 18
-
D. KRfONER, S. NOELLE & M. ROKYTA,
Convergence of higher order
upwind finite volume schemes on unstructured grids
for scalar conservation laws in several space dimensions,
Numer. Math. 71 (1995) 527-560.
- 19
-
D. KRfONER & M. ROKYTA,
Convergence of Upwind Finite Volume Schemes for Scalar
Conservation Laws in two space dimensions, SINUM 31 (1994) 324-343.
- 20
-
P.D. LAX, Hyperbolic Systems of Conservation Laws
and the Mathematical
Theory of Shock Waves (SIAM, Philadelphia, 1973).
- 21
-
P. L. LIONS, B. PERTHAME & P. SOUGANIDIS,
Existence and stability of entropy solutions for the
hyperbolic systems of isentropic gas dynamics in Eulerian and
Lagrangian coordinates,
Comm. Pure and Appl. Math. 49 (1996), 599-638.
- 22
-
P. L. LIONS, B. PERTHAME & E. TADMOR,
Kinetic formulation of scalar conservation laws and related equations,
J. Amer. Math. Soc. 7(1) (1994), 169-191
- 23
-
P. L. LIONS, B. PERTHAME & E. TADMOR,
Kinetic formulation of the isentropic gas-dynamics equations
and p-systems, Comm. Math. Phys. 163(2) (1994), 415-431.
- 24
-
S. NOELLE & M. WESTDICKENBERG
Convergence of finite volume schemes. A new convergence proof for finite
volume schemes using the kinetic formulation of conservation laws,
Preprint.
- 25
-
O. A. OL\V EINIK Discontinuous solutions of nonlinear differential
equations, Amer. Math. Soc. Transl. (2), 26 (1963), 95-172.
- 26
-
B. PERTHAME, Global existence of solutions to the BGK model
of Boltzmann equations, J. Diff. Eq. 81 (1989), 191-205.
- 27
-
B. PERTHAME, Second-order Boltzmann schemes for compressible
Euler equations, SIAM J. Num. Anal. 29, (1992), 1-29.
- 28
-
B. PERTHAME & E. TADMOR, A kinetic
equation with kinetic entropy functions for
scalar conservation laws, Comm. Math. Phys.136 (1991), 501-517.
- 29
-
K. H. PRENDERGAST & K. XU, Numerical hydrodynamics from
gas-kinetic theory, J. Comput. Phys. 109(1) (1993), 53-66.
- 30
-
J. SMOLLER, Shock Waves and Reaction-Diffusion Equations,
Springer-Verlag, New York, 1983.
- 31
-
L. TARTAR, Compensated compactness and applications to partial
differential equations, in Research Notes in Mathematics 39,
Nonlinear Analysis and Mechanics, Heriott-Watt Symposium, Vol. 4 (R.J. Knopps,
ed.) Pittman Press, (1975), 136-211.
- 32
-
L. TARTAR, Discontinuities and oscillations, in Directions in PDEs,
Math Res. Ctr Symposium (M.G. Crandall, P.H. Rabinowitz and R.E. Turner eds.)
Academic Press (1987), 211-233.
Eitan Tadmor
Mon Dec 8 17:34:34 PST 1997