Applied Numerical Methods
Fall '98, Math 151A, UCLA

Lecture:     MS 5117  MWF 1-1:50pm

Instructor: Professor Eitan Tadmor    office hours. -- MS 7945  Tu: 2-3pm  Fr: 2:30-3:30pm

Discussion:  MS 5117  Tu   1-1:50pm

Teaching assistant: J. Tanner            office hours. -- MS 6142   Tr: 10-12, 1-2pm

Course description [Postscript file]
 

151a: Applied Numerical Methods. Fall '98

Undergraduate course in Applied Mathematics

Prof. Eitan Tadmor

  1. Solution of Nonlinear Systems
    1. The bisection method
    2. Newton's Method
    3. ... local vs. global convergence, multiple roots

      Assignment #1 [ HTML file ] [ postscript file ]
    4. Extensions of Newton's method
    5. ... divided differences: the secant method, Steffensen's method...,

      ... Systems of equations

      ... high-order extensions

    6. Fixed point iterations
    7. Accelerations
    8. ... Aitken's process, Steffenssen's method

      Assignment #2 (an overview) [ HTML file ] [ postscript file ]
    9. *Polynomial Equations
    10. ... Local methods - Newton, Bairstow,...

      ... Global methods - Bernoulli, Graeffe, Laguerre, the square root method,...

  2. Approximation Theory
    1. General overview
    2. ... On the choice of norm: L2 vs. L¥

      ... Weierstrass' density theorem, Bernstein polynomials,

    3. Interpolation I. Lagrange interpolant
    4. Interpolation II. Newton interpolant
    5. ... Divided differences. Error estimates.

      ... Equidistant points. Synthetic calculus

      ... Forward backward and centered formulae.

      Assignment #3 [ HTML file ] [ postscript file ]
    6. Interpolation III. Error estimates.
    7. ... Runge effect, region of analyticity

      Mid-Term #1 (Q & A's -- an example) [ HTML file ] [ postscript file ]
      Mid-Term #2 (Q & A's -- the real one) [ HTML file ] [ postscript file ]
    8. *Addt'l topics
      • Interpolation IV. Interpolation with derivatives
      • ... Hermite interpolation; Splines

      • Trigonometric interpolation
      • ... FFT, truncation + aliasing, error estimates,

        ... elliptic solvers, fast summations ( - discrete convolution),...

    9. Least Squares Approximations I. A general overview
    10. ... Gramm mass matrix, ill-conditioning of monomials in L2

    11. Least Squares Approximations II. Fourier expansion
    12. ... Bessel, Parseval, ...

    13. Least Squares Approximations III. Orthogonal polynomials
    14. ... Examples: Legendre, Chebyshev,...

      ... Sturm's sequence; more examples: Jacobi, Hermite,..

      Assignment #4 [ HTML file ] [ postscript file ]
    15. *Trigonometric polynomials
    16. ... Complex & real representation; Chebyshev interpolation,..

    17. MinMax Approximation
    18. ... Smoothness & Error Estimates

  3. Numerical Differentiation
    1. The method of undetermined coefficients
    2. ... The differentiated algebraic interpolant;

      ... *The differentiated spline interpolant

      ... Error estimates

    3. Equidistant Differentiation
    4. ... The synthetic approach - operational calculus

      ... Richardson's extrapolation

      Assignment #5 [ HTML file ] [ postscript file ]
    5. *Addt'l topics
      • Trigonometric differentiation
      • Spline differentiation
    Mid-Term #3 [ HTML file ] [ postscript file ]
  4. Numerical Integration - Quadratures
    1. Equidistant points
    2. ... Newton-Cotes formulae

      ... Composite Simpson's rule

      ... Romberg & adaptive integration

      Assignment #6 [ HTML file ] [ postscript file ]
    3. Gauss Quadratures
  5. Solution of Linear Systems - Direct Methods
    1. Introduction
    2. ... Cramer's rule costs N!; diagonal, triangular and unitary systems

    3. Gauss elimination
    4. ... The basic algorithm

      ... pivoting, multipliers, update, back substitution

      ... Operations count

      ... storage & pivoting for special matrices:

      ... symmetric, positive definite, banded, Hessenberg,...

    5. LU decomposition
    6. ... Elementary matrices

    7. Backward error analysis
    8. ... norms, a priori estimates, ill-conditioning,

      ... condition number, backward error estimates

      ... Pivoting: partial & full pivoting

      ... amplification factors: diagonally dominant, symmetric pos. definite,

      ... banded & Hessenberg matrices

      ... Equilibration: counterexamples,

      ... equilibration & pivoting - scaling, iterative refinement

    9. Direct LU decompositions
    10. Crout, Doolittle & Cholesky, tridiagonal systems

    11. *Addt'l topics
      • Other direct methods
      • ... Cayley-Hamilton, Conjugate Gradient, block decomposition,

        ... Sherman-Woodbury formula,QR decomposition

      • Special Fast Solvers
      • ... FFT, Circulant matrices, Toeplitz,... 


      Final (+ some answers) [ HTML file ] [ postscript file ]

References

BF   Bunder & Faires, NUMERICAL ANALYSIS, PWS Co. Boston, 1993
At  K. Atkinson, An Introduction to NUMERICAL ANALYSIS, Wiley, 1987.
CdB S. Conte & C. deBoor, ELEMENTARY NUMERICAL ANALYSIS, McGraw-Hill, User friendly; Shows how 'it' works; Proofs, exercises and notes
DB G. Dahlquist & A. Bjorck, NUMERICAL METHODS, Prentice-Hall, User friendly; Shows how 'it' works; Exercises
IK
 E. Isaacson & H. Keller, ANALYSIS of NUMERICAL METHODS, Wiley, The 'First'; Proofs; out-dated in certain aspects; Encrypted message in Preface
RR A. Ralston & P. Rabinowitz, FIRST COURSE in NUMERICAL ANALYSIS, 2nd ed., McGraw-hill, Detailed; Scholarly written; Comprehensive; Proofs exercises and notes
SB J. Stoer & R. Bulrisch, INTRODUCTION TO NUMERICAL ANALYSIS, Springer-Verlag, detailed account on approximation, linear solvers & eigensolvers, ODE solvers,..
W
 B. Wendroff, THEORETICAL NUMERICAL ANALYSIS, Academic Press, 1966, Only the 'Proofs'; elegant presentation

Eitan Tadmor