Next: Nonlinear
PDEs - Time-Dependent Up: No
Title Previous: Contents
References
-
Sc1
-
L. Schwartz, MATHEMATICS FOR THE PHYSICAL SCIENCES, Hermann,
1966.
Elementary theory of distributions which he 'invented'.., Fourier
transform (FT), and basic PDEs
-
Sc2
-
L. Schawrtz, THÉORIE DES DISTRIBUTIONS, Hermann, 1966.
The basic reference.
-
Ru
-
W. Rudin, FUNCTIONAL ANALYSIS, Mcgraw-Hill, 1991.
Part II. on Distributions, FT and PDEs; given within the functional
analysis formalism...
-
Fo1
-
G. Folland, INTRODUCTION to PDEs, Princeton Univ. Press, 1976.
Graduate textbook; the basic trinity of PDEs in modern treatment;
preliminaries with concise discussion on distributions, FT, etc...
-
Fo2
-
G. Folland, REAL ANALYSIS. Modern Techniques and their Applications,
Wiley, 1984.
§6 on stronf and weak
spaces; §8 on Fourier Transform convolutions distributions and Sobolev
in a nut shell
-
Fr
-
A. Friedman, PDEs of PARABOLIC TYPE, 1964.
Classical treatment of Parabolic equations; detailed proofs; consult
also Friedman's 1969 PDEs and 1963 generalized functions
-
Ri
-
R. Richtmyer, PRINCIPLES OF ADVANCED MATHEMATICAL PHYSICS,
Springer-Verlag, 1978.
User friendly introductory textbook; §2-4 on Distributions
and FT
-
GT
-
D. Gilbarg & N. Trudinger ELLIPTIC PDEs of 2nd ORDER,
Springer-Verlag, 1983.
Classical ref. for Elliptic PDEs; detailed Proofs; §7 contains
a detailed discussion on Sobolev spaces
-
Hö
-
L. Hörmander, THE ANALYSIS OF LINEAR PARTIAL DIFFERENTIAL
OPERATORS, Vol. I, Springer-Verlag, 1983-1985.
Everything in an accesible discussion on distributions - Hörmander
style,...
-
Tr
-
F. Treves, BASIC LINEAR PDEs, 1975, Academic Press, The
detailed theory on linear PDEs; readable discussion on Distributions, FT..
-
Ad
-
R. Adams, SOBOLEV SPACES, Academic Press, 1975. A classical
refrence with all the basics.
-
BTW
-
P. Brenner, V. Thomee & L. Wahlbin, Besov Spaces and Applications
for Difference Methods for Initial Value Problems, Lecture Notes in
Mathematics, 434, Springer-Verlag, 1974.
Applications of Besov spaces to regularity of difference methods.
-
Ev
-
C. Evans, PDEs, Berkeley Lecture Notes, 3A, 1993.
-
FJW
-
M. Frazier, B. Jawerth & G. Weiss, Littlewood-Paley Theory
and the Study of Function Spaces, A unified point of view
-
Tr
-
H. Triebel, FUNCTIONS SPACES, Everything...
-
BS
-
Bennett & Sharpley, INTERPOLATION OF OPERATOS, Academic
Press, 1988.
A detailed account.
-
BL
-
J. Bergh & J. Löfstrom, INTERPOLATION SPACES, An Introduction,
Springer-Verlag, 1976.
-
DL
-
R. DeVore & G. Lorntz, CONSTRUCTIVE APPROXIMATION, Springer-Verlag,
1993.
§2 on spaces of functions; §6 on K-functionlas and interpolation.
Very readable
-
Fo2
-
G. Folland, REAL ANALYSIS. Modern Techniques and their Applications,
Wiley, 1984.
-
To
-
A. Torchinsky, REAL VARIABLE METHODS in HARMONIC ANALYSIS,
Academic Press, 1986. The Caderon-Zygmund 'program'; very readable.
-
St
-
E. Stein, SINGULAR INTEGRALS AND DIFFERENTIABILITY OF FUNCTIONS,
Princeton, 1970. The Classical redrence for the multi-variate case
-
Ta
L. Tartar, Nonlinear PDEs Using Compactness Methods, Lecture
Notes. Applications to Navier-Stokes and the nonlinear wave equations.
Eitan Tadmor