Young Researchers Workshop: Ki-Net 2012-2019


Fractional diffusion limit of a linear kinetic transport equation in a bounded domain

Pedro Aceves Sanchez

North Carolina State University

Abstract:  

In recent years, the study of evolution equations featuring a fractional Laplacian has received much attention due to the fact that they have been successfully applied into the modelling of a wide variety of phenomena, ranging from biology, physics to finance. The stochastic process behind fractional operators is linked, in the whole space, to a $\alpha$-stable processes as opposed to the Laplacian operator which is linked to a Brownian stochastic process. In addition, evolution equations involving fractional Laplacians offer new interesting and very challenging mathematical problems. There are several equivalent definitions of the fractional Laplacian in the whole domain, however, in a bounded domain there are several options depending on the stochastic process considered. In this talk we shall present results on the rigorous passage from a velocity jumping stochastic process in a bounded domain to a macroscopic evolution equation featuring a fractional Laplace operator. More precisely, we shall consider the long-time/small mean-free path asymptotic behaviour of the solutions of a re-scaled linear kinetic transport equation in a smooth bounded domain.