- ...perturbations
- This is a rather
strong notion of hyperbolicity; it restricts such hyperbolic system to
be of first-order.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...:
- (and respectively, ) indicate summation
with of the first
(and respectively, the first and the last) terms.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...points
- We treat here the case of an odd number of 2N+1 collocation points.
We get even in §2.2.3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...with
- 348#288 correspond to Chebyshev family, 396#336
correspond to Legendre, etc.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...utilizing
- Utilizing = integration by parts in this case.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...estimate
- This should be compared with the straightforward 'familiar' bound
456#396.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ....
- We note that in
the previous constant coefficient case, the approximate model coincides with
the differential case, hence the stability estimate was nothing but the a
priori estimate for the differential equation itself.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...exponent,
- To see this, use Duhammel's
principle for 586#526 where 587#527 or integrate directly.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...sign
- If a(x)>0, then (meth_ps.22) is semi-bounded (and hence
stable) in the weighted 666#606-norm, with
667#607.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...reads
- The last equality should be interpreted of course in
the 697#637-sense, with
limited by the initial 697#637-smoothness of 807#747.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...modes).
- Either
one can be carried out efficiently by the FFT.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
- ...have
- Here we utilize the fact that the error term in
Gauss quadrature (2.5.4) is proportional
to an intermediate value of the 2N-th derivative,
1024#964 (- e.g. consult (Gauss_Chebyshev.rule))
in the present context the inequality follows,
1025#965.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.