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SWARM-BASED GRADIENT DESCENT MEETS
SIMULATED ANNEALING\ast 

ZHIYAN DING\dagger , MARTIN GUERRA\ddagger , QIN LI\ddagger , AND EITAN TADMOR\S 

Abstract. We introduce a novel method, called swarm-based simulated annealing (SSA), for
nonconvex optimization which is at the interface between the swarm-based gradient-descent (SBGD)
[J. Lu et al., arXiv:2211.17157; E. Tadmor and A. Zenginoglu, Acta Appl. Math., 190 (2024)] and
simulated annealing (SA) [V. Cerny, J. Optim. Theory Appl., 45 (1985), pp. 41--51; S. Kirkpatrick
et al., Science, 220 (1983), pp. 671--680; S. Geman and C.-R. Hwang, SIAM J. Control Optim., 24
(1986), pp. 1031--1043]. Similarly to SBGD, we introduce a swarm of agents, each identified with a
position, x and mass m, to explore the ambient space. Similarly to SA, the agents proceed in the
gradient descent direction, and are subject to Brownian motion. The annealing rate, however, is
dictated by a decreasing function of their mass. As a consequence, instead of the SA protocol for
time-decreasing temperature, here the swarm decides how to ``cool down"" agents, depending on their
own accumulated mass. The dynamics of masses is coupled with the dynamics of positions: agents
at higher ground transfer (part of) their mass to those at lower ground. Consequently, the resulting
SSA optimizer is dynamically divided between heavier, cooler agents viewed as ``leaders"" and lighter,
warmer agents viewed as ``explorers."" Mean-field convergence analysis and benchmark optimizations
demonstrate the effectiveness of the SSA method as a multidimensional global optimizer.

Key words. optimization, stochastic gradient descent, swarm-based gradient descent, provi-
sional minimum, simulated annealing
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1. Introduction. We introduce a new swarm-based optimization method to
compute the global minimum of nonconvex objective functions, x\ast := argmin\Omega \subset \BbbR d

F (x). The swarm consists of N agents---enumerated j = 1,2, . . . ,N , each of which
is identified with a time-dependent position, xj

t \in \BbbR d, and time-dependent mass,
mj

t \in \BbbR +. The positions are governed by an overdamped Langevin process,1

dxj
t = - \nabla F

\Bigl( 
xj
t

\Bigr) 
dt+

\sqrt{} 
2\sigma j

tdW
j
t , j = 1,2, . . . ,N,

where \{ W j
t \} Nj=1 are independent Brownian motions with amplitude

\sqrt{} 
2\sigma j

t , where \sigma j
t

is the scaled ``temperature"" (dating back to Langevin [20]), or are referred to as the
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2746 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

annealing rate, [18, 5, 12, 11, 7]. The intricate aspect of the dynamics is a proper
tuning of these annealing-rates \sigma j

t . This is where the masses, \{ mj
t\} , come into play:

they are driven by

dmj
t = - m

j
t

\Bigl( 
F
\Bigl( 
xj
t

\Bigr) 
 - F

N

t

\Bigr) 
dt, j = 1,2, . . . ,N,

where F
N

t is the mass-weighted average of the N agents, F
N

t :=
\sum N

j=1 mj
tF (\bfx j

t)\sum N
j=1 mj

t

. We

tune the annealing rates as a decreasing function of the mass, \sigma j
t = \sigma (mj

t ). Thus,
our protocol for annealing rate prevents lighter agents from being trapped in basins
of local minima while it ``cools down"" heavier agents at the basin of attraction of
the global minimum of F . This is where the swarm-based gradient descent [21] meets
simulated annealing (SA), [18, 10, 5], except that the protocol for the ``cooling process""
is different: instead of an explicit recipe for decreasing the temperature as is done in
SA, our swarm-based approach lets different agents at a lower ground cool down,
depending on their increasing mass \sigma j

t = \sigma (mj
t ).

Why provisional minimum? We refer to the mass-weighted average

F
N

t :=

\sum N
j=1m

j
tF (xj

t )\sum N
j=1m

j
t

(1.1)

as the provisional minimum. To clarify why a provisional minimum is needed, we
note that according to the mass equation above, agents that are above the provisional
minimum will shed a fraction of their mass---masses that are transferred to agents
that are below the provisional minimum. Since the total mass remains constant,\sum 

j dm
j
t/dt= 0, masses tend to concentrate with agents near or below the provisional

minimum, and it therefore makes sense to adjust the annealing rate, \sigma j
t , as a decreasing

function of the mass,

\sigma j
t = \sigma (mj

t ) : (0,\infty ) \mapsto \rightarrow \BbbR +, j = 1,2, . . . ,N.

Given this adjustment of mass-dependent annealing, it is expected that for a large
crowd of agents, N \gg 1, (1.1) will approach the global minimum,

lim
N\rightarrow \infty 

F
N

t
t\rightarrow \infty  - \rightarrow F\ast := F (x\ast ).

Indeed, our main result states that, under the appropriate assumptions (in particular,
the assumption of uniqueness of the global minimizer made in Assumption 2.3 below),
this is true.

The method described above lies at the interface of the deterministic swarm-based
gradient descent (SBGD) approach and the stochastic-based SA. We recall that the
SBGD is governed by a deterministic system which governs the swarm of N -agents,
and for j = 1,2, . . . ,N ,

d

dt
xj(t) = - \alpha (mj(t))\nabla F (xj(t)),

d

dt
mj(t) = - 

\bigl( 
F (xj(t)) - F

N
(t)
\bigr) 
mj(t) .(SBGD)

The key feature advocated in (SBGD) is swarm dynamics of both positions and masses
embedded in \BbbR d \times \BbbR +. The additional dimension of mass serves as a platform for
communication among agents, encoded in the provisional minimum, which in [21]

was taken as the minimum of the crowd at the given time, F
N
(t) = minj F (xj(t)).
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2747

The same swarm-based methodology is used in this work, except for two distinct
features. First, the provisional minimum is given here by (1.1) which eventually is
expected to approach the global minimum, minj F (xj(t)), used in [21]. The second
and more essential distinction, is how masses are being used to adjust the dynamics of
positions along the gradient descent: in SBGD, it is the time step which is adjusted as a
decreasing function of the mass, \alpha = \alpha (mj(t)). In our new proposed algorithm, masses
are used to adjust the annealing rate, \sigma = \sigma (mj

t ), as a decreasing function of mass.
This new algorithm is named swarm-based simulated annealing (SSA) optimizer:\left\{   dxj

t = - \nabla F (xj
t )dt+

\sqrt{} 
2\sigma (mj

t )dW
j
t ,

dmj
t = - 

\bigl( 
F (xj

t ) - F
N

t

\bigr) 
mj

tdt,
j = 1,2, . . . ,N.(SSA)

Remark 1.1 (on the choice of provisional minimum). The SBGD method (SBGD)
employs the actual minimum, F (t) =minj F (xj(t)) as its provisional minimum [21, 29].
This, however, is not amenable to the mean-field limit analysis that we will pursue
in section 2.1. The mean-field limit requires us to tour the whole landscape, ending
with

lim
N\rightarrow \infty 

F
N
(t) = lim

N\rightarrow \infty 
min

j=1,...,N
F (xj(t)),

which is already the global minimum we are looking for. Instead, the use of mass-

weighted average F
N

t in (SSA) as a provisional minimum, admits a mean-field inter-
pretation which is shown to be driven towards the same desired global minimum.

1.1. In-swarm communication combined with stochastic search. Appli-
cation of deterministic swarm-based methods reveals that such methods succeed in
the accuracy sense but fail in the probability sense,---namely, when these methods
succeed, then they find the global optimizer, yet there is a nonzero probability for
the methods to fail to do so. In contrast, stochastic methods succeed in the prob-
ability sense but fail in the accuracy sense,---namely, such methods can always find
the global basin, but they do not necessarily return a true global optimizer. In this
context, our swarm-based optimization with adjusted annealing rate takes advantage
of randomness in (SSA)1 combined with communication-based swarming in (SSA)2,
with the aim of succeeding in both the probability and the accuracy sense. This is
achieved by a dynamic process that combines swarm communication and randomness,
as described below.

The essential role of communication in SBGD was already emphasized in [21, 29].
This is amplified in the present context, upon setting \sigma (\cdot ) \equiv 0 in (SSA)1. One ends
up with a crowd of N independent agents driven by gradient descent,

\.xj(t) = - \nabla F (xj(t)), j = 1,2, . . . ,N.

The success of such a noncommunicating crowd in exploring the ambient landscape is
significantly worse than that of a communication-based crowd. In section 4, we show
that the method fails in the probability sense.

Communication is encoded in the provisional minimum, where agents ``commu-

nicate"" their height relative to F
N

t . In our swarm-based optimization with adjusted

annealing rate (SSA), F
N

t is taken as the weighted average height, weighted by the
different masses. Consequently, there is a dynamic distinction between agents above
the provisional minimum and agents below or at the level of the provisional minimum.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2748 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

Agents above the provisional minimum carry lighter mass and therefore explore the
ambient landscape with a relatively large Brownian motion; these are viewed as the
explorers of the crowd. The heavier agents---those that are below or at the level of
the provisional minimum, evolve in the gradient direction with a smaller Brownian
motion and are viewed as leaders of the crowd. Of course, once an exploring light

agent ``hits"" a new lower ground at, say, xj
t , where F (xj

t ) \ll  - F
N

t , it is expected
to accumulate more mass from the higher agents, to cool down, and eventually to
become a leader, driving the crowd to a new lower point.

We note that by fixing a constant annealing rate, (SSA)1 with \sigma (mj
t )\equiv \sigma > 0, we

also encounter a problem. In this case, we recover the Langevin Monte Carlo

dxj
t = - \nabla F (xj

t )dt+
\surd 
2\sigma dW j

t , j = 1,2, . . . ,N,

whose long time invariant measure suggests x\propto e - F (\bfx )/\sigma . It admits the proper con-

vergence in the zero-variance limit, x
\sigma \rightarrow 0 - \rightarrow argmin\bfx F (x), but, as we show in section 4

below, the resulting method fails in the accuracy sense for any finite \sigma . Thus, the dy-
namic process of relabeling explorers and leaders, coupled through a mass-dependent
annealing rate, \sigma j

t = \sigma (mj
t ), is at the heart of the matter.

In section 5 we prove global convergence of (SSA) in both the sense of probability
and the sense of accuracy. This is achieved in a two-step argument: first, we conduct
a large-crowd, mean-field analysis summarized in Theorem 2.2 below, which allows us
to pass from finitely many stochastic-ODEs governing the particle system (SSA), to
the limiting dynamics for the probability measure, \mu t(x,m), governed by the limiting
PDE (2.4); and second, the large-time behavior of the latter, summarized in Theo-
rem 2.4, implies that in this mean-field limit, the PDE in the long time returns the
provisional minimum as the global minimum. Combining these results we conclude

in Theorem 2.5 the claimed convergence lim inft\rightarrow \infty limN\rightarrow \infty F
N

t = F\ast with a precise
convergence rate of polynomial type. Further, in section 3 we derive the corresponding
macroscopic description of the system.

1.2. The swarm-based optimization with adjusted annealing rate. The
exchange of mass encoded in (SSA) assigns smaller masses to agents with higher
values, while the decreasing property of \sigma (m) ensures that these agents experience
larger random perturbations. As a result, lighter agents serve as explorers, while
heavier agents serve as leaders. As noted in [21], upon normalization of the total
mass,

\sum 
j m

j
t \equiv 

\sum 
j m

j
0 = 1, masses can be interpreted as ``probabilities of finding a

global minimum""; heavier agents have larger probability in doing so. The computation
proceeds by discretization of (SSA) using Euler--Maruyama's formula with a proper
time step h> 0,

xj
n+1 = xj

n  - h\nabla F (xj
n) +

\sqrt{} 
2h\sigma 

\Bigl( 
mj

n

\Bigr) 
\bfitxi j(1.2)

for j = 1,2, . . . ,N and \bfitxi j \sim \scrN (0, Id) independent and identically distributed (i.i.d.).
for all j. The detailed algorithm is summarized in Algorithm 1.1. The mass is con-
served throughout the algorithm. According to line 6, the update gives

\sum N
j=1m

j
n+1 =\sum N

j=1m
j
n - h

\sum N
j=1m

j
n

\bigl( 
F (xj

n) - Fn

\bigr) 
=
\sum N

j=1m
j
n, where the second summation term

becomes zero owing to the definition of Fn shown in line 3 in the algorithm.
The performance of the algorithm is presented in section 6. This follows the

analytical study in sections 2 and 5 in which we state and, respectively, prove the
main analytical results of the paper, regarding the large-crowd, large-time dynamics
associated with (SSA).
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2749

Algorithm 1.1 SSA.

1: Input: Initial distribution \mu 0(x,m), h as step size, and nT as \# of iterations

2: \{ (xj
0,m

j
0)\} Nj=1 are i.i.d. drawn from \mu 0 for j = 1,2, . . . ,N

3: F 0\leftarrow 
\sum N

j=1 mj
0F (\bfx j

0)\sum N
j=1 mj

0

\% Fn \equiv F
N

n =
\sum N

j=1 mj
nF (\bfx j

n)\sum N
j=1 mj

n
the provisional minimum at tn

4: for n= 0,1,2, . . . , nT  - 1 do
5: for j = 1,2, . . . ,N do

6: mj
n+1\leftarrow mj

n  - mj
nh
\bigl( 
F (xj

n) - Fn

\bigr) 
for j = 1,2, . . . ,N

7: end for

8: Generate N samples i.i.d. such that \bfitxi j \sim \scrN (0, Id)

9: xj
n+1\leftarrow xj

n  - h\nabla F (xj
n) +

\sqrt{} 
2h\sigma (mj

n)\bfitxi 
j for j = 1,2, . . . ,N

10: Fn+1\leftarrow 
\sum N

j=1m
j
n+1F (xj

n+1)/
\sum N

j=1m
j
n+1

11: end for

12: jopt\leftarrow argminj F (xj
n+1)

13: Output: x
j\mathrm{o}\mathrm{p}\mathrm{t}
nT and FnT

1.3. Related work. There are several well-known nonconvex optimization algo-
rithms which combine swarm-based and/or stochastic effects. We mention biologically
inspired methods of ant colony optimization [23], artificial bee colony optimization
[16], and firefly optimization [31], and physically inspired methods of wind-driven op-
timization, [1]. We also mention particle swarm optimization methods which explore
the state space with randomized drifts toward the best global position, [17, 26] and
its stochastic version in [14].

The stochastic part of our method is motivated by SA driven by stochastic noise
that is ``cooled down"" as time evolves, [15, 24]. The key feature in one-particle SA
dynamics is the protocol for cooling down, i.e., setting a properly tuned decreasing-
in-time annealing rate \sigma t \propto c/

\surd 
log t [13, 12, 11, 19, 7]. This should be compared with

our swarm-based approach, in which the annealing rate of each agent is dictated by
a decreasing function of its mass,2 \sigma t \mapsto \rightarrow \sigma (mj

t ); essentially, we let the swarm decide
how to cool down the agents as they accumulate more mass.

The idea of gaining from the stochastic interaction of more than just one agent
can be found in the more recent work [6]. Here Langevin diffusion swaps between two
agents---a ``global explorer"" and a ``local explorer,"" with two annealing rates which
correspond to high and low temperatures. The dynamics takes place in \BbbR d \times \BbbR d. In
our method, there is a crowd of N agents which evolve their mass-dependent annealing

rates in
\bigl( 
\BbbR d \times \BbbR +

\bigr) \otimes N
.

In the present context, it is instructive to calibrate our method with the consensus
based optimization (CBO), [25, 2, 30, 3, 4, 8]. The CBO is governed by a swarm-based
dynamics of SDEs,

dxj
t = - \lambda 

\Bigl( 
xj
t  - F

\lambda 

t

\Bigr) 
dt+ \sigma 

\bigm| \bigm| \bigm| xj
t  - F

\lambda 

t

\bigm| \bigm| \bigm| dW j
t , F

\lambda 

t :=

N\sum 
j=1

xj
t

\Biggl( 
exp( - \lambda F (xj

t ))\sum N
i=1 exp( - \lambda F (xi

t))

\Biggr) 
,

(1.3)

2In fact, we allow a larger class of mass scaling, covered in Assumptions 2.1 and 2.3.
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2750 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

which are steering towards the weighted minimum F
\lambda 

t . Indeed, the weighted min

F
\lambda 

t can be viewed as the provisional minimum driving the CBO (1.3), in view of the
Laplace principle,

lim
\lambda \rightarrow \infty 

\biggl( 
 - 1

\lambda 
log

\biggl( \int 
\omega \lambda 
F (x)d\rho 

\biggr) \biggr) 
= min

supp(\rho )
F, \omega \lambda 

F (x) := exp( - \lambda F (x)).

It is here that we observe the main difference between our swarm-based optimization
with adjusted annealing rate (SSA) and the CBO (1.3): while the latter requires a

user tuning of parameter \lambda in F
\lambda 
, the swarm-based framework of [21] provides us with

an adaptive mechanism which dynamically adjusts the provisional minimum based on

the mass distribution in different parts of the landscape, F
N

t , and the corresponding
mean-field F

\mu 

t , outlined in (2.4) below.

2. Statement of main results.

2.1. From empirical distribution to mean field. We define the empirical
distribution \mu N

t , which records the ensemble distribution of \{ xj
t ,m

j
t\} Nj=1 that obey

(SSA), as a measure on the feature space (x,m):

\mu N
t (x,m) =

1

N

N\sum 
j=1

\delta \bfx j
t
(x)\otimes \delta mj

t
(m) .(2.1)

Recall that the provisional minimum is given by the weighted average in (1.1), which
is expressed as

F
N

t =

N\sum 
j=1

mj
tF (xj

t )

N\sum 
j=1

mj
t

=

\int \int 
mF (x)d\mu N

t (x,m)\int \int 
md\mu N

t (x,m)

.(2.2)

To formally derive the mean-field limit, we use a smooth test function \phi (x,m) that is
compactly supported on \BbbR d \times \BbbR . By definition,\int \int 

\phi (x,m)\mu N
t (x,m)dxdm=

1

N

N\sum 
j=1

\phi (xj
t ,m

j
t ) .

Differentiating, recalling It\^o's formula, and using (SSA) yield

1

N

N\sum 
j=1

\BbbE 
\Bigl[ 
d\phi (xj

t ,m
j
t )
\Bigr] 

=
1

N

N\sum 
j=1

\BbbE 
\biggl[ 
\nabla \bfx \phi (x

j
t ,m

j
t ) \cdot dx

j
t +

1

2
\langle D2

\bfx \phi ,2\sigma (m
j
t )\rangle Trdt+ \partial m\phi (xj

t ,m
j
t )dm

j
t

\biggr] 

=
1

N

N\sum 
j=1

\BbbE 
\biggl[ 
\nabla \bfx \phi \cdot 

\bigl( 
 - \nabla F (xj

t )dt+

\sqrt{} 
2\sigma (mj

t )dW
j
t

\bigr) \biggr] 
\underbrace{}  \underbrace{}  

Term I

+
1

N

N\sum 
j=1

\BbbE 
\Bigl[ 
\langle D2

\bfx \phi ,\sigma (m
j
t )\rangle Trdt

\Bigr] 
\underbrace{}  \underbrace{}  

Term II

+
1

N

N\sum 
j=1

\BbbE 
\Bigl[ 
 - \partial m\phi (xj

t ,m
j
t )(F (xj

t ) - F
N

t )mj
tdt
\Bigr] 

\underbrace{}  \underbrace{}  
Term III

,
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2751

where D2
\bfx \phi is the Hessian. The first term we have is, I = I1 + I2, where

I1 :=
1

N

N\sum 
j=1

\BbbE 
\Bigl[ 
\nabla \bfx \phi (x

j
t ,m

j
t ) \cdot  - \nabla F (xj

t )
\Bigr] 
= - 

\int \int 
\nabla \bfx \phi (x,m) \cdot \nabla F (x)\mu N

t (x,m)dxdm

=

\int \int 
\phi (x,m)\nabla \bfx \cdot (\mu N

t \nabla F (x))dxdm,

and I2 :=\BbbE [dW j
t ] = 0. For the second term, we have

II :=
1

N

N\sum 
j=1

\BbbE [\langle D2
\bfx \phi (x

j
t ,m

j
t ), \sigma (m

j
t )\rangle Trdt] =

\int \int 
\Delta \bfx \phi (x,m)\sigma (m)\mu N

t (x,m)dxdm

=

\int \int 
\phi (x,m)\sigma (m)\Delta \bfx \mu 

N
t (x,m)dxdm,

and finally, for the third term

III :=
1

N

N\sum 
j=1

\BbbE 
\Bigl[ 
 - \partial m\phi (xj

tm
j
t )m

j
t (F (xj

t ) - F
N

t )
\Bigr] 

= - 
\int \int 

\partial m\phi (x,m)(m(F (x) - F
N

t ))\mu N
t (x,m)dxdm

=

\int \int 
\phi (x,m)\partial m(m\mu N

t (x,m))(F (x) - F
N

t )dxdm.

Adding all these terms together, we conclude that the dynamics of the empirical
distribution, \mu N

t , is governed by the Vlasov equation

\partial t\mu 
N
t =\nabla \bfx \cdot (\mu N

t \nabla F ) +
\bigl( 
F (x) - F

N

t

\bigr) 
\partial m(m\mu N

t ) + \sigma (m)\Delta \bfx \mu 
N
t .(2.3)

This formally provides the mean-field equation. In the mean-field limit, \mu =
\mu t(x,m) is governed by

\partial t\mu =\nabla \bfx \cdot (\mu \nabla F ) +
\bigl( 
F (x) - F

\mu 

t )
\bigr) 
\partial m(m\mu ) + \sigma (m)\Delta \bfx \mu ,(2.4a)

driven by the corresponding provisional minimum

F
\mu 

t :=
\BbbE \mu [mF (x)]

\BbbE \mu [m]
=

\int \int 
mF (x)d\mu t(x,m)\int \int 

md\mu t(x,m)

.(2.4b)

Observe that F
\mu 

t denotes the provisional minimum associated with the mean-field \mu ,
which is to be distinguished from the discrete provisional minimum in (2.2), denoted

F
N

t . We note that, similarly to the discrete mass conservation in (SSA), 1
N

\sum 
j m

j
t \equiv 1,

the total mass in (2.4a) is conserved and equals one:

d

dt

\int 
md\mu t(x,m) = 0,

\int 
md\mu t(x,m) = 1 .

Our first result quantifies the convergence of the empirical distribution, \mu N
t , to

its limiting mean field \mu t. To this end, we make the following assumption.
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2752 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

Assumption 2.1.
\bullet Lipschitz bound---F , \nabla F and

\sqrt{} 
\sigma (\cdot ) are all Lipschitz continuous functions

with the Lipschitz constant denoted by L.
\bullet Boundedness---There exists D > 0 such that | F | +

\surd 
\sigma \leqslant D. Without loss of

generality, we set D\geqslant 1 and can further assume F \geqslant 0.
\bullet Bounded support uniformly in m---there exists Mmax <\infty such that

Supp\bfx (\mu 0(x,m))\subset [0,Mmax] \forall m\in (0,\infty ).

The next theorem shows that the empirical distribution \mu N
t and the mean field \mu 

stay close. The proof is postponed to section 5.1.

Theorem 2.2 (mean-field limit). Assume that Assumption 2.1 holds. Let \mu t =
\mu t(x,m) be the mean-field solution of (2.4a) and let \mu N

t = 1
N

\sum N
j=1 \delta \bfx j

t
(x)\otimes \delta mj

t
(m) be

the empirical distribution associated with the ensemble of swarm-based solutions (SSA)
subject to compatible initial data so that \{ xj

0 ,m
j
0\} are i.i.d. samples of \mu t=0(x,m).

Then \mu t and \mu N
t are close in the Wasserstein sense:

W2

\bigl( 
\mu t, \mu 

N
t

\bigr) 
\rightarrow 0 in probability as N \rightarrow \infty ,(2.5)

and the corresponding provisional minimum (2.2), F
N

t , converges to F
\mu 

t in (2.4b)
with the law of large numbers rate: there exists a constant Ct = Ct(\mu 0, F, d) > 0
independent of N such that

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| FN

t  - F
\mu 

t

\bigm| \bigm| \bigm| \Bigr] < Ct\surd 
N

.(2.6)

The bound (2.6) provides the crucial convergence bound, which translates the
provisional minimum of the many-agent system to that of the limiting mean-field
equation.

2.2. Large-time convergence---from mean field to global minimum.

Upon translating the convergence of F
N

t to that of F
\mu 

t , we now switch gear to study
the convergence of the mean-field limiting PDE. To this end, we need another set of
assumptions for F,\sigma , and \mu 0.

Assumption 2.3. We assume that the following conditions hold true:
\bullet \sigma (m) has a bounded support: there exists an mc > 0 such that \sigma (m) = 0

when m>mc;
\bullet (mc,\infty )\cap suppm(\mu 0) \not = \emptyset and M(0) =

\int \int 
md\mu 0(x,m) = 1;

\bullet F admits a unique global minimum x\ast := argmin\bfx \in \Omega F (x) and, thus,
\nabla F (x\ast ) = 0.

The next theorem shows that the provisional minimum of the mean field, F
\mu 

t , is
converging towards the global minimum of F . The proof is postponed to section 5.2
below.

Theorem 2.4 (large-time behavior). Assume that Assumptions 2.1, 2.3 hold.
Let \mu be the mean field with provisional minimum F

\mu 

t . We have

lim inf
t\rightarrow \infty 

F
\mu 

t =min
\bfx 

F (x) = F\ast .(2.7)

Specifically,---for any \epsilon > 0, we let \scrN \epsilon denote the following \epsilon neighborhood:

\scrN \epsilon := \{ x | F (x)<F\ast + \epsilon \} .(2.8)
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2753

Then, there exists a time t\epsilon (mc)<\infty defined by3

t\epsilon (mc) =
2

\epsilon 
log

\left(  \Biggl( sup
t\in [0,1]

\int 
\scrN \epsilon 

\int \infty 

mc

md\mu t(x,m)

\Biggr)  - 1
\right)  + 1,(2.9)

and t\leqslant t\epsilon (mc) such that

F
\mu 

t <F\ast + \epsilon .(2.10)

Observe that even if \scrN \epsilon \cap supp\bfx \mu 0(\cdot ,m) = \emptyset , then the presence of the Brownian
motion implies that there exists a time, t \in (0,1], such that \scrN \epsilon \cap supp\bfx \mu t(\cdot ,m) \not = \emptyset 
and, consequently, (2.9) always yields a finite number threshold, t\epsilon . The combination
of (2.9)--(2.10) together claims that within roughly t\epsilon \approx 1

\epsilon time, the global optimal
value can be found within \epsilon accuracy, implying an \scrO (1/\epsilon ) convergence. However,
the constant dependence heavily relies on the initial data, and we cannot claim the
optimality of the :convergence rate:' our numerical findings reported in section 6
indicate the possibility of a much better convergence rate in the sense that t\epsilon = log(1/\epsilon )
is already sufficient to ensure (2.10). See Figure 6.4.

Combining Theorems 2.2 and 2.4 we conclude the following main result of this
paper, namely, the convergence of the empirical distribution to the mean field.

Theorem 2.5. Assume that Assumptions 2.1, 2.3 hold4 . Let \mu N
t (x,m) be the

empirical distribution associated with an ensemble of solutions of the swarm-based
optimization with adjusted annealing rate (SSA), (xj

t ,m
j
t ), subject to the initial data

drawn i.i.d. from \mu t=0. Fix an arbitrary \epsilon > 0. Then, for a large enough crowd spelled
out in (2.6), depending on time, t\epsilon /2 defined in (2.9),

N >
4C2

t\epsilon /2

\epsilon 2
where t\epsilon /2 <

4

\epsilon 
log

\left(  \Biggl( sup
t\in [0,1]

\int 
\scrN \epsilon /2

\int \infty 

mc

md\mu t(x,m)

\Biggr)  - 1
\right)  + 1,

so that there is a t < t\epsilon /2 and the provisional minimum F
N

t is within \epsilon of min\bfx F (x),

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| FN

t  - min
\bfx 

F (x)
\bigm| \bigm| \bigm| \Bigr] < \epsilon .

Proof of Theorem 2.5. By Theorem 2.4, there is a t < t\epsilon /2 so that\bigm| \bigm| \bigm| F\mu 

t  - min
\bfx 

F (x)
\bigm| \bigm| \bigm| < \epsilon 

2
,

and according to Theorem 2.2, there exists a constant, Ct such that

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| FN

t  - F
\mu 

t

\bigm| \bigm| \bigm| \Bigr] < Ct\surd 
N

.

Hence, for large enough N such that Ct\surd 
N

< \epsilon 
2 or, equivalently, N >

4C2
t\epsilon /2

\epsilon 2 (note

Ct\epsilon /2 >Ct), we conclude

3Note that
\int 
\scrN \epsilon 

\int \infty 
mc

md\mu t(x,m) \leqslant 
\int \int 

md\mu t(x,m) = 1 for mass conservation. The term in the

logarithm is always bigger than 1, so that the expression on the right-hand side of (2.9) quantifies
positive time.

4Assumption 2.3 requires the uniqueness of the global minimum. This assumption can be replaced
by finite many global minima \{ xk\} Kk=1 with F (xk) = F\ast for all k. The details of the analysis need
to be revised accordingly. In the proof (section 5.2), we point out the specific location to revise to
accommodate the situation where multiple global minima coexist.
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2754 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

\BbbE 
\Bigl[ \bigm| \bigm| \bigm| FN

t  - min
\bfx 

F (x)
\bigm| \bigm| \bigm| \Bigr] \leqslant \BbbE 

\Bigl[ \bigm| \bigm| \bigm| FN

t  - F
\mu 

t

\bigm| \bigm| \bigm| \Bigr] + \bigm| \bigm| \bigm| F\mu 

t  - min
\bfx 

F (x)
\bigm| \bigm| \bigm| \leqslant \epsilon .

3. From mean field to macroscopic description. We shall briefly comment
on the macroscopic description of the swarm-based optimization with adjusted anneal-
ing rate, furnished in terms of the first two moments---the density, \rho :\BbbR +\times \BbbR d \mapsto \rightarrow \BbbR +,
and momentum, \rho \sansM :\BbbR +\times \BbbR d \mapsto \rightarrow \BbbR (observe that time dependence is denoted as usual
for the density \rho = \rho (t,x), macroscopic mass, \sansM =\sansM (t,x), etc.),

\rho (t,x) :=

\int 
\mu t(x,m)dm, \rho \sansM (t,x) :=

\int 
m\mu t(x,m)dm.

Taking the first two moments of the mean field (2.4), we find that\left\{       
\rho t  - \nabla \bfx \cdot (\rho \nabla F ) =\Delta \bfx 

\int 
\sigma (m)\mu t(x,m)dm,

(\rho \sansM )t  - \nabla \bfx \cdot (\rho \sansM \nabla F ) =
\bigl( 
F (t) - F (x)

\bigr) 
\rho \sansM +\Delta \bfx 

\int 
m\sigma (m)\mu t(x,m)dm.

(3.1)

We normalize the total mass and momentum,
\int 
\rho (t,x)dx \equiv 1 and

\int 
\rho \sansM (t,x)dx \equiv 1,

which leaves us with a provisional minimum, F (t) =F
\mu 

t , given by

F (t) =

\int 
F (x)\rho \sansM (t,x)dx.

To unlock a closed form of the diffusion on the right, we assume the simplest closure
based on a monokinetic pseudo-Maxwellian, \mu t(x,m) = \rho (t,x)\delta (m  - \sansM (t,x)). This
yields

\rho t  - \nabla \bfx \cdot (\rho \nabla F ) =\Delta \bfx (\sigma (t,x)\rho (t,x)), \sigma (t,x) := \sigma (\sansM (t,x)),(3.2a)

(\rho \sansM )t  - \nabla \bfx \cdot (\rho \sansM \nabla F ) =
\bigl( 
F (t) - F (x)

\bigr) 
\rho \sansM +\Delta \bfx 

\bigl( 
\sigma (t,x)\rho \sansM (t,x)

\bigr) 
.(3.2b)

The momentum (3.2b) can be converted into a drift-diffusion equation for the
velocity \sansM ,

\rho t  - \nabla \bfx \cdot (\rho \nabla F ) =\Delta \bfx (\sigma (t,x)\rho (t,x)),(3.3a)

\sansM t  - \nabla F \cdot \nabla \bfx \sansM =
\bigl( 
F (t) - F (x)

\bigr) 
\sansM +

1

\rho 
\Delta \bfx 

\bigl( 
\sigma (t,x)\rho \sansM 

\bigr) 
 - 1

\rho 
\Delta \bfx 

\bigl( 
\sigma (t,x)\rho 

\bigr) 
\sansM , x\in supp\{ \rho (t, \cdot )\} .(3.3b)

We shall not dwell on a detailed study of (3.3), but note the descent estimate

d

dt

\int 
(F (x) - F\ast )\rho (t,x)dx= - 

\int 
| \nabla F (x)| 2\rho (t,x)dx+

\int 
\Delta \bfx F (x)\sigma (t,x)\rho (t,x)dx

with expected long time behavior \rho (t,x)
t\rightarrow \infty  - \rightarrow \delta (x - x\ast ) and\sansM (t,x)

t\rightarrow \infty  - \rightarrow 1(x\ast ). Observe
that \sigma (t,x) should vanish as x\rightarrow x\ast .

4. Pitfalls. We examine the swarm-based optimization with adjusted annealing
rate in two extreme cases--when \sigma (m) \equiv 0 and \sigma (m) \equiv 1. The former case turns
off stochasticity and amounts to a deterministic system of N independent gradient
descending agents; we show that their convergence fails in a probability sense. The
latter turns on stochasticity uniformly for all agents, which amounts to a stochastic
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2755

system of N independent gradient descending agents; we show that their convergence
fails in an accuracy sense.

We note that in both cases, the resulting systems are passive systems in the sense
that the weights of agents do not affect their trajectories. As a consequence, agents
roam the landscape with equal randomness with no distinction between leaders and
explorers. The convergence of the provisional minimum F

\mu 

t is naturally worse than
in the communicating swarm-based dynamics.

4.1. Swarming with no communication. What is the effect of Brownian
motion in our swarm-based optimization with adjusted annealing rate? If we turn
off the amplitude, \sigma (m) \equiv 0, then (SSA) is reduced to a deterministic system of
noninteracting agents with no Brownian motion (and again we switch the notations

of time dependence in deterministic quantities, xj(t),mj(t), F
N
(t), etc.):\left\{     

d

dt
xj(t) = - \nabla F (xj(t)),

d

dt
mj(t) = - mj(t)

\bigl( 
F (xj(t)) - F

N
(t)
\bigr) 
,

j = 1, . . . ,N.(4.1)

We still assume random initial configurations: the initial drawing is independent,
with \{ xj(0)\} Nj=1 drawn from an initial distribution \rho 0, and mj(0) = 1

N . Since the total
mass is conserved, we can let M(t) = 1, so that the provisional minimum is reduced to

the usual average F
N
(t) =

\sum N
j=1m

j(t)F (xj(t)). The main feature missing in (4.1) is
communication. Different agents at different positions proceed along gradient descent,
independently of each other: since communication through a provisional minimum is
missing, the dynamics lacks the collective engagement of the agents as a self-organized
swarm.

The essential role of communication was already highlighted in the context of the
SBGD method, [21]: once we decouple the step size and mass, setting a uniform step
size in (SBGD), that is, \alpha (m) \equiv 1, then the success rate of the resulting noncom-
municating swarm-based method decreases dramatically. The system (4.1) provides
yet another realization of the essential role of communication. We note that since all
particles are ``descending,"" it is also straightforward to show that the collective mean

objective F
N
(t) is always decreasing: d

dtF
N
(t) \leqslant 0. See section A.1 for the proof.

However, even though F
N
(t) continues to decay in time, it does not guarantee the

desired convergence to the global minimum, lim inft\rightarrow \infty F
N
(t) = min\bfx F (x). This is

due to the passive nature of the gradient descent of the agents. In particular, it is
likely that all agents will become trapped at local minima or saddle points, especially
when the number of particles is not sufficiently large. Turning on the communication
term that adjusts the strength of the Brownian motion, as is done in (SSA), allows
particles situated at local minima to experience increased randomness. This increased
randomness facilitates their escape from local basins. With the communication and
the randomness turned off, we have the following.

Theorem 4.1 (lack of communication and failure in probability). Assume F has
a unique global minimum x\ast inside an open set \Omega so that F\ast = F (x\ast ). Moreover,
\nabla F (x) = 0 on \partial \Omega . If we let \{ xj(0)\} drawn from \rho 0, m

j(0) = 1
N , and evolve according

to (4.1), then the success rate is bounded:

\BbbP 
\Bigl( 
lim
t\rightarrow \infty 

F
N
(t) = F\ast 

\Bigr) 
\leqslant 1 - 

\biggl( 
1 - 

\int 
\Omega 

d\rho 0

\biggr) N

.(4.2)
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2756 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

In particular, if supp\bfx (\rho 0)\cap \Omega = \emptyset , the success rate is 0, meaning \BbbP (limt\rightarrow \infty F
N
(t) =

F\ast ) = 0 for all N .

Proof. To prove (4.2), we first notice that without the Brownian motion, the
deterministic system drives the samples to the local minima of the local basin in

which the samples are located at t = 0, so the event \{ limt\rightarrow \infty F
N
(t) = minF\} \subset \bigl\{ 

\exists xi(0)\in \Omega 
\bigr\} 
. This implies

\BbbP 
\Bigl( 
lim
t\rightarrow \infty 

F
N
(t) =minF

\Bigr) 
\leqslant \BbbP 

\bigl( \bigl\{ 
\exists xj(0)\in \Omega 

\bigr\} \bigr) 
= 1 - 

\biggl( 
1 - 

\int 
\Omega 

d\rho 0

\biggr) N

.

When supp\bfx (\rho 0) \cap \Omega = \emptyset , we have
\int 
\Omega 
d\rho 0 = 0, so using this formula, we have for

all N ,

\BbbP 
\Bigl( 
lim
t\rightarrow \infty 

F
N
(t) =minF

\Bigr) 
= 0 .

Since F
N
(t) is a decreasing in t, the above equality leads to \BbbP (limt\rightarrow \infty F

N
(t)>minF )

= 1.

This theorem explicitly spells out the ``probability failure,"" so there is a nonzero
probability that the mean objectives obtained by the particles cannot ever achieve
the global optimizer.

4.2. Stochastic system. The limitation of (4.1) clearly originates from the fact
that particle evolution closely resembles classical gradient descent, lacking a mecha-
nism for domain exploration and avoiding entrapment in local minima. The other
end of the spectrum is to introduce ``too much"" exploration. Indeed, setting \sigma = 1,
we have \Biggl\{ 

dxj
t = - \nabla F (xj

t )dt+
\surd 
2dW j

t ,

dmj
t = - m

j
t

\bigl( 
F (xj

t ) - F
N

t

\bigr) 
dt,

j = 1, . . . ,N,(4.3)

where W j
t is the Brownian motion at time t associated with particle j. The only

difference compared to (4.1) is the addition of a constant Brownian motion term. This
Brownian motion term allows more effective exploration of the domain by preventing
agents from becoming trapped at any local minima.

The trajectory of \{ xj
t\} resembles that of Langevin Monte Carlo, and under ap-

propriate assumptions, it is well known that the distribution of xj
t converges to

\rho \infty \propto exp( - F (x)) as t\rightarrow \infty . Incorporating mass exchange in (4.3) does not eliminate
this issue. Carrying out the same mean-field analysis as was done in section 2.1, we
find that the limiting PDE is

\partial t\mu =\nabla \bfx \cdot (\mu \nabla F ) +
\bigl( 
F (x) - F

\mu 

t

\bigr) 
\partial m(m\mu ) +\Delta \bfx \mu ,

F
\mu 

t =

\int \int 
mF (x)\mu t(x,m)dxdm\int \int 

m\mu t(x,m)dxdm

.
(4.4)

Analyzing this mean-field PDE, we can show that there is always a positive gap
between F

\mu 

t and F\ast .
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2757

Theorem 4.2. Consider a function F satisfying the conditions outlined in As-
sumptions 2.1 and 2.3, and further assume it is uniformly strongly convex in a ball
around the global minimum x\ast , meaning \Delta \bfx F \geqslant \xi d for \xi > 0 and x \in BR(x\ast ). Then
there exists \epsilon > 0 (depending on L,D, \xi , d, and R) such that the provisional minimum
associated with the mean field \mu in (4.4) satisfies

F
\mu 

t \geqslant min\{ F\ast + \epsilon ,F
\mu 

0\} \forall t > 0.(4.5)

For brevity, the proof of this theorem is in Appendix A.2. This theorem explicitly
spells out the ``accuracy failure."" The global optimizer cannot be achieved by the
mean objective.

5. Proofs of the main results. In this section we prove Theorem 2.2 on the
convergence to the mean-field limit, and Theorem 2.4 on the large-time behavior of
the limiting equation.

5.1. Convergence to the mean-field limit. Theorem 2.2 states that the em-
pirical distribution \mu N

t that assembles all samples that follow the coupled SDE system
(SSA), is close to the limiting distribution \mu that solves the PDE (2.4a).

There are a few different but related approaches for justifying mean-field limits,
including the coupling method, the energy/entropy estimates, the utilization of the
Bogoliubov--Born--Green--Kirkwood--Yvon hierarchies and running the tightness ar-
gument to confine a sequence of measures for the convergence; see references [22, 28].
Here we employ the coupling method, introduced in [28]. The coupling method places
a stronger requirement on the field, but the machinery is rather simple to use, and it
has the advantage of providing a precise convergence rate in terms of the number of
particles, N .

To apply the coupling method, one usually designs an auxiliary system that is
pushed forward by the underlying field. This auxiliary system serves as a bridge
linking the discrete SDE system and the limiting mean-field PDE. On the one hand,
it is driven by the underlying field and thus its ensemble closely resembles \rho , and, on
the other hand, this system adopts the SDE structure and can be easily compared with
the original self-consistent SDE system. In our context, we define such an auxiliary
system as \{ \widetilde xj

t , \widetilde mj
t\} Nj=1, that is governed by\left\{     d\widetilde xj

t =  - \nabla F
\Bigl( \widetilde xj

t

\Bigr) 
dt+

\sqrt{} 
2\sigma 
\Bigl( \widetilde mj

t

\Bigr) 
dW j

t ,

d\widetilde mj
t =  - \widetilde mj

t (F
\Bigl( \widetilde xj

t

\Bigr) 
 - F

\mu 

t )dt
(5.1)

with the initial data set to be \{ \widetilde xj
0 = xj

0 , \widetilde mj
0 =mj

0\} , and F
\mu 
=\BbbE \mu [mF (x)]/\BbbE \mu [m] was

defined in (2.4b). For this system, we define the corresponding empirical distribution
and the provisional minimum:

\widetilde \mu N
t =

1

N

\sum 
i

\delta \widetilde \bfx j
t
(x)\otimes \delta \widetilde mj

t
(m) and \widetilde FN

t =

1
N

\sum 
j \widetilde mj

tF
\Bigl( \widetilde xj

t

\Bigr) 
\BbbE \mu [m]

.(5.2)

We note that this system has a clear similarity with the original SDE (SSA) but
is passive, in the sense that the dynamics of \widetilde mj

t is driven by F
\mu 
instead of \widetilde FN

t . While
the dynamics of \widetilde xt agrees with that of xt, the mass changes call for different rates. In

particular, in (SSA), we compare F (xt) with F
N

t that is self-generated in (2.2) and,
here, F (\widetilde xt) is compared with F

\mu 
defined from the underlying PDE system (2.4a).
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2758 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

As a consequence, this new \{ \widetilde xj
0 = xj

0 , \widetilde mj
0 =mj

0\} system gets passively pushed forward
by the underlying \mu .

This design of the new auxiliary system prompts two lemmas.

Lemma 5.1. Suppose Assumption 2.1 holds. Let \{ \widetilde xj
t , \widetilde mj

t\} Nj=1 be the system de-

fined in (5.1) and let \mu t solve (2.4a). If the initial condition \{ \widetilde xj
0 = xj

0 , \widetilde mj
0 = mj

0\} is
drawn from \mu t=0, then

\bullet \mu t and \widetilde \mu N
t are close in the Wasserstein sense:

W2(\mu t, \widetilde \mu N
t )\rightarrow 0 in probability as N \rightarrow \infty ;

\bullet there exists a constant C =C(t, d,\mu 0, F ) independent of N such that \widetilde FN
t and

F
\mu 

t are close,

\BbbE (| \widetilde FN
t  - F

\mu 

t | )<
C\surd 
N

,

where \widetilde FN
t and F

\mu 

t are defined in (5.2) and (2.4b), respectively.

Lemma 5.2. Suppose Assumption 2.1 holds. Let \{ \widetilde xj
t , \widetilde mj

t\} Nj=1 be the system de-

fined in (5.1), and let \{ xj
t ,m

j
t\} Nj=1 solve (SSA). Suppose the two systems have the

same initial conditions, then
\bullet \mu N

t and \widetilde \mu N
t are close in the Wasserstein sense:

W2(\mu 
N
t , \widetilde \mu N

t )\rightarrow 0 in probability as N \rightarrow \infty ;(5.3)

\bullet there exists a constant C = C(t, d,\mu 0, F ) independent of N such that \widetilde FN
t

converges to F
N

t with the rate

\BbbE (| \widetilde FN
t  - F

N

t | )<
C\surd 
N

.(5.4)

Here \widetilde FN
t and F

N

t are defined in (5.2) and (2.2).

With these two lemmas, Theorem 2.2 is a straightforward corollary, calling trian-
gle inequalities

W2(\mu t, \mu 
N
t )\leqslant W2(\mu t, \widetilde \mu N

t ) +W2(\widetilde \mu N
t , \mu N

t )

and

\BbbE (| F\mu 

t  - F
N

t | )\leqslant \BbbE (| F\mu 

t  - \widetilde FN
t | ) +\BbbE (| \widetilde FN

t  - F
N

t | ) .

Here we omit the details and proceed to provide the proof of the two lemmas.

Proof of Lemma 5.1. Calling Theorem 1 in [9],

\BbbE 
\bigl( 
W2(\mu t, \widetilde \mu N

t )
\bigr) 
=\scrO (N - \theta )\rightarrow 0 as N \rightarrow \infty 

with \theta =max\{ 1/2,1/d\} . This implies

W2(\mu t, \widetilde \mu N
t )\rightarrow 0 in probability as N \rightarrow \infty .

For weak convergence, we note that (\widetilde x, \widetilde m) are i.i.d. samples from \mu and thus

\BbbE 

\left(  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
j=1

\widetilde mj
tF
\Bigl( \widetilde xj

t

\Bigr) 
 - 
\int 

mF (x)d\mu t(x,m)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right)  <

Var1/2\mu (mF )
\surd 
N

\leqslant 
C(t)M\surd 

N
.
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The proof for Lemma 5.2 is the standard coupling method. This amounts to
comparing the original SDE (SSA) with the auxiliary SDE (5.1). In particular, we
note that the x component of the two systems are almost identical:

xj
t = - \nabla F (xj

t )dt+

\sqrt{} 
2\sigma (mj

t )dW
j
t versus \widetilde xj

t = - \nabla F (\widetilde xj
t )dt+

\sqrt{} 
2\sigma (\widetilde mj

t )dW
j
t .

Then we can subtract one from the other and trace the growth of the error. The same
strategy is applied to tracking mj

t  - \widetilde mj
t . The combination of the two pieces of error

gives the control of the Wasserstein distance of W2(\mu 
N
t , \widetilde \mu N

t ).

Proof of Lemma 5.2. Noting that \mu N
t = 1

N

\sum 
j \delta \bfx j

t
(x)\otimes \delta mj

t
(m) and \widetilde \mu N

t = 1
N

\sum 
j \delta \widetilde \bfx j

t

(x)\otimes \delta \widetilde mj
t
(m), then recalling the definition of the Wasserstein metric, we have

W2(\widetilde \mu N
t , \mu N

t )2 \leqslant 

\left(  1

N

N\sum 
j=1

\biggl[ 
| xj

t  - \widetilde xj
t | 2 +

\bigm| \bigm| \bigm| mj
t  - \widetilde mj

t

\bigm| \bigm| \bigm| 2\biggr] 
\right)  .(5.5)

Define

\Omega =

\left\{   
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1N

N\sum 
j=1

mj
0  - \BbbE \mu 0

(m)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leqslant 1

2

\right\}   .

With Chebyshev's inequality and boundedness of m from Assumption 2.1, we obtain

\BbbP (\Omega c)\leqslant 
4\BbbE \mu 0

(m2)

N
\leqslant 

C

N
and thus, accordingly, \BbbP (\Omega )\geqslant 1 - C

N
\geqslant 

1

2
.

Define

G(t) =\BbbE 

\left(  1

N

N\sum 
j=1

\biggl[ 
| xj

t  - \widetilde xj
t | 2 +

\bigm| \bigm| \bigm| mj
t  - \widetilde mj

t

\bigm| \bigm| \bigm| 2\biggr] 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right)  .(5.6)

If we can show G(t)\sim 1/N , then conditioned on \Omega , a set whose probability goes to 1,
W2(\widetilde \mu N

t , \mu N
t )2\rightarrow 0 as N \rightarrow \infty , proving (5.3).

Similarly, to estimate (5.4), we note

| \widetilde FN
t  - F

N

t | 

\leqslant 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1
N

\sum N
j=1

\Bigl( \widetilde mj
tF
\Bigl( \widetilde xj

t

\Bigr) 
 - mj

tF (xj
t )
\Bigr) 

\BbbE \mu [m]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\left(  1

N

N\sum 
j=1

mj
tF (xj

t )

\right)  \Biggl( 1

\BbbE \mu [m]
 - 1

1
N

\sum 
mj

t

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leqslant 
(i)

C

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
j=1

\Bigl( 
mj

t - \widetilde mj
t

\Bigr) 
F (\widetilde xj

t )+
1

N

N\sum 
j=1

mj
t

\Bigl( 
F (xj

t ) - F
\Bigl( \widetilde xj

t

\Bigr) \Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

1
N

\sum 
mj

t - \BbbE \mu [m]

\BbbE \mu [m]
\Bigl( 

1
N

\sum 
mj

t

\Bigr) 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right]  

=
(ii)

C

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
j=1

\Bigl( 
mj

t - \widetilde mj
t

\Bigr) 
F (\widetilde xj

t )+
1

N

N\sum 
j=1

mj
t

\Bigl( 
F (xj

t ) - F
\Bigl( \widetilde xj

t

\Bigr) \Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1
N

\sum 
mj

0 - \BbbE \mu 0
[m]

\BbbE \mu 0
[m]
\Bigl( 

1
N

\sum 
mj

0

\Bigr) 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right]  

\leqslant 
(iii)

C

\left[  \sqrt{}    1

N

N\sum 
j=1

\biggl[ 
| xj

t  - \widetilde xj
t | 2 +

\bigm| \bigm| \bigm| mj
t  - \widetilde mj

t

\bigm| \bigm| \bigm| 2\biggr] + \bigm| \bigm| \bigm| \bigm| 1N \sum 
mj

0  - \BbbE \mu 0
[m]

\bigm| \bigm| \bigm| \bigm| 
\right]  .

(5.7)
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Here in (i) we used the upper boundedness of both5 m and F . In (ii), we apply
the conservation of mass:

\sum 
mj

t =
\sum 

mj
0 and \BbbE \mu [m] = \BbbE \mu 0 [m]. In (iii), we used the

triangle inequality, the Cauchy--Schwarz inequality, and Lipschitz continuity of F .
Consequently, the constant C depends on D, L, and Mmax (from Assumption 2.1).

To insert it into (5.4), then

\BbbE (| \widetilde FN
t  - F

N

t | )\leqslant \BbbE 
\Bigl( 
| \widetilde FN

t  - F
N

t | 
\bigm| \bigm| \Omega \Bigr) \BbbP (\Omega ) +\BbbE 

\Bigl( 
| \widetilde FN

t  - F
N

t | 
\bigm| \bigm| \Omega c
\Bigr) 
\BbbP (\Omega c) .

So combining with (5.7), we rewrite (5.4):

\BbbE (| \widetilde FN
t  - F

N

t | )\leqslant \BbbE 
\Bigl( 
| \widetilde FN

t  - F
N

t | 
\bigm| \bigm| \Omega \Bigr) + C

N

\leqslant C \BbbE 

\left(  \sqrt{}    1

N

N\sum 
j=1

\biggl[ 
| xj

t - \widetilde xj
t | 2+

\bigm| \bigm| \bigm| mj
t  - \widetilde mj

t

\bigm| \bigm| \bigm| 2\biggr] 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right)  

\underbrace{}  \underbrace{}  
\leqslant 
\surd 

G(t)

+C \BbbE 
\biggl( \bigm| \bigm| \bigm| \bigm| 1N \sum 

mj
0  - \BbbE \mu 0 [m]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega \biggr) \underbrace{}  \underbrace{}  
\leqslant 1

\BbbP (\Omega )
\BbbE (| 1N

\sum 
mj

0 - \BbbE \mu 0
[m]| )\leqslant C\surd 

N

+
C

N
.

(5.8)

Once again, if we can show G(t)\sim 1/N , (5.4) is complete.
The rest of the proof is dedicated to showing the bound for G(t). To do so, we

will trace the evolution of | xj
t  - \widetilde xj

t | 2 and | mj
t  - \widetilde mj

t | 2, respectively.
\bullet To trace | xj

t - \widetilde xj
t | 2, we compare the xj

t -equation in (SSA) and the \widetilde xj
t -equation

in (5.1) to have

g(x) = | x| 2, \nabla \bfx g(x) = 2x, D2
\bfx g= 2\BbbI .

Then g(xj
t  - \widetilde xj

t ) = | x
j
t  - \widetilde xj

t | 2 = \langle x
j
t  - \widetilde xj

t ,x
j
t  - \widetilde xj

t \rangle , and with It\^o's formula we
get

dg(xj
t  - \widetilde xj

t )

=

\left(  \langle \nabla g, - (\nabla F (xj
t ) - \nabla F

\Bigl( \widetilde xj
t

\Bigr) 
)\rangle +Tr

\left(  \Biggl( \sqrt{} \sigma (mj
t ) - 

\sqrt{} 
\sigma 
\Bigl( \widetilde mj

t

\Bigr) \Biggr) 2

D2
\bfx g

\right)  \right)  dt

+

\Biggl\langle 
\nabla g,

\sqrt{} 
2\sigma (mj

t ) - 
\sqrt{} 
2\sigma 
\Bigl( \widetilde mj

t

\Bigr) \Biggr\rangle 
dW j

t

=

\left(   - 2\langle xj
t  - \widetilde xj

t ,\nabla F (xj
t ) - \nabla F

\Bigl( \widetilde xj
t

\Bigr) 
\rangle + 2d

\bigm| \bigm| \bigm| \bigm| \bigm| 
\sqrt{} 
\sigma (mj

t ) - 
\sqrt{} 
\sigma 
\Bigl( \widetilde mj

t

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  dt

+ 2

\Biggl\langle 
xj
t  - \widetilde xj

t ,

\sqrt{} 
2\sigma (mj

t ) - 
\sqrt{} 
2\sigma 
\Bigl( \widetilde mj

t

\Bigr) \Biggr\rangle 
dW j

t .

Taking the expectation of the whole formula, the mean of the Brownian
motion gets dropped out and we have

5First, we notice that, according to the boundedness in m condition in Assumption 2.1, the
initial data for mj

t are bounded by M\mathrm{m}\mathrm{a}\mathrm{x}, meaning | mj
0| <M\mathrm{m}\mathrm{a}\mathrm{x} for all j at the initial time. Given

that | F | \leqslant D, then according to the mj
t equation in (SSA), we call Gr\"onwall's inequality to obtain

that | mj
t | \leqslant M\mathrm{m}\mathrm{a}\mathrm{x}e2Dt for all time. The same argument applies to bound \widetilde mj

t . We denote the upper
bound c that depends on M\mathrm{m}\mathrm{a}\mathrm{x}, D, and t.
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d

dt
\BbbE [g(xj

t  - \widetilde xj
t )| \Omega ] =

d

dt
\BbbE [| xj

t  - \widetilde xj
t | 2| \Omega ]

\leqslant 2(L+L2)
\Bigl( 
\BbbE [| xj

t  - \widetilde xj
t | 2| \Omega ] + d\BbbE [| mj

t  - \widetilde mj
t | 2| \Omega ]

\Bigr) 
,

(5.9)

where we used from Assumption 2.1 that both \nabla F and
\surd 
\sigma are L-Lipschitz.

\bullet To trace | mj
t - \widetilde mj

t | 2, we compare them-equation in (SSA) and them-equation
in (5.1) to have

d

dt
| mj

t  - \widetilde mj
t | 2

= - 2(mj
t  - \widetilde mj

t )(m
j
tF (xj

t ) - \widetilde mj
tF (\widetilde xj

t ))

+ 2(mj
t  - \widetilde mj

t )

\Biggl( 
1
N

\sum N
i=1m

i
tF (xi

t)
1
N

\sum N
i=1m

i
t

 - \BbbE \mu [mF (x)]

\BbbE \mu (m)

\Biggr) 
= - 2(mj

t  - \widetilde mj
t )

2F (xj
t ) - 2(mj

t  - \widetilde mj
t )\widetilde mj

t

\Bigl( 
F (xj

t ) - F (\widetilde xj
t )
\Bigr) 

+ 2(mj
t  - \widetilde mj

t )

\Biggl( 
1

N

N\sum 
i=1

mi
tF (xi

t) - 
1

N

N\sum 
i=1

\widetilde mi
tF (\widetilde xi

t)

\Biggr) 
/

\Biggl( 
1

N

N\sum 
i=1

mi
t

\Biggr) 

+ 2(mj
t  - \widetilde mj

t )

\Biggl( 
1
N

\sum N
i=1 \widetilde mi

tF (\widetilde xi
t)

1
N

\sum N
i=1m

i
t

 - \BbbE \mu [mF (x)]

\BbbE \mu (m)

\Biggr) 
.

(5.10)

Reordering all terms, we have

d

dt
| mj

t  - \widetilde mj
t | 2 = - 2(m

j
t  - \widetilde mj

t )
2F (xj

t )\underbrace{}  \underbrace{}  
(i)

 - 2(mj
t  - \widetilde mj

t )\widetilde mj
t (F (xj

t ) - F
\Bigl( \widetilde xj

t

\Bigr) 
)\underbrace{}  \underbrace{}  

(ii)

+2(mj
t  - \widetilde mj

t )

\Biggl( 
1

N

N\sum 
i=1

(mi
t  - \widetilde mi

t)F (xi
t)

\Biggr) 
/

\Biggl( 
1

N

N\sum 
i=1

mi
t

\Biggr) 
\underbrace{}  \underbrace{}  

(iii)

+ 2(mj
t  - \widetilde mj

t )

\Biggl( 
1

N

N\sum 
i=1

\widetilde mi
t(F (xi

t) - F (\widetilde xi
t))

\Biggr) 
/

\Biggl( 
1

N

N\sum 
i=1

mi
t

\Biggr) 
\underbrace{}  \underbrace{}  

(iv)

+2(mj
t  - \widetilde mj

t )

\Biggl( 
1
N

\sum N
i=1 \widetilde mi

tF (\widetilde xi
t)

1
N

\sum N
i=1m

i
t

 - \BbbE \mu [mF (x)]

\BbbE \mu (m)

\Biggr) 
\underbrace{}  \underbrace{}  

(v)

.

(5.11)

We analyze each term separately:
(i) According to Assumption 2.1, F (xj

t )\geqslant 0, so,  - 2(mj
t  - \widetilde mj

t )
2F (xj

t )\leqslant 0.
(ii) Using Young's inequality,

 - 2(mj
t  - \widetilde mj

t )\widetilde mj
t

\Bigl( 
F (xj

t ) - F
\Bigl( \widetilde xj

t

\Bigr) \Bigr) 
\leqslant \widetilde mj

t

\biggl( 
| mj

t  - \widetilde mj
t | 2 +

\bigm| \bigm| \bigm| F (xj
t ) - F

\Bigl( \widetilde xj
t

\Bigr) \bigm| \bigm| \bigm| 2\biggr) 
\leqslant c[| mj

t  - \widetilde mj
t | 2 +L2| xj

t  - \widetilde xj
t | 2] ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 8

7.
68

.2
41

.1
31

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2762 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

where c comes from the boundedness of m, seen in Footnote 5 and L is
the Lipschitz constant from Assumption 2.1.

(iii) Because of the total mass preservation and the definition of \Omega , we have

1

N

N\sum 
i=1

mi
t =

1

N

N\sum 
i=1

mi
0 \geqslant 

1

2
.

Thus,

2(mj
t  - \widetilde mj

t )

\Biggl( 
1

N

N\sum 
i=1

(mi
t  - \widetilde mi

t)F (xi
t)

\Biggr) 
/

\Biggl( 
1

N

N\sum 
i=1

mi
t

\Biggr) 

\leqslant 2| mj
t  - \widetilde mj

t | 2 + 2

\Biggl( 
1

N

N\sum 
i=1

(mi
t  - \widetilde mi

t)F (xi
t)

\Biggr) 2

\leqslant D2

\left[  | mj
t  - \widetilde mj

t | 2 +

\Biggl( 
1

N

N\sum 
i=1

(mi
t  - \widetilde mi

t)

\Biggr) 2
\right]  

\leqslant D2

\Biggl[ 
| mj

t  - \widetilde mj
t | 2 +

1

N

N\sum 
i=1

| mi
t  - \widetilde mi

t| 2
\Biggr] 
,

where we used Young's inequality in the first inequality, boundedness of
F in the second (following Assumption 2.1), and the H\"older's inequality
in the last.

(iv) Using the same argument as in (iii) we get

2(mj
t  - \widetilde mj

t )

\Biggl( 
1

N

N\sum 
i=1

\widetilde mi
t(F (xi

t) - F (\widetilde xi
t))

\Biggr) 
/

\Biggl( 
1

N

N\sum 
i=1

mi
t

\Biggr) 

\leqslant 2| mj
t  - \widetilde mj

t | 2 + 2

\Biggl( 
1

N

N\sum 
i=1

\widetilde mi
t(F (xi

t) - F (\widetilde xi
t))

\Biggr) 2

\leqslant c

\left[  | mj
t  - \widetilde mj

t | 2 +

\Biggl( 
1

N

N\sum 
i=1

(F (xi
t) - F (\widetilde xi

t))

\Biggr) 2
\right]  

\leqslant c

\Biggl[ 
| mj

t  - \widetilde mj
t | 2 +

1

N

N\sum 
i=1

| F (xi
t) - F (\widetilde xi

t)| 2
\Biggr] 

\leqslant c

\Biggl[ 
| mj

t  - \widetilde mj
t | 2 +

L2

N

N\sum 
i=1

| xi
t  - \widetilde xi

t| 2
\Biggr] 
,

where we used Young's inequality in the first inequality, boundedness
of \widetilde mj

t in the second (see Footnote 5), H\"older's in the third, and finally
the Lipschitz continuity of F in the last inequality.

(v) Using the same argument,

2(mj
t  - \widetilde mj

t )

\Biggl( 
1
N

\sum N
i=1 \widetilde mi

tF (\widetilde xi
t)

1
N

\sum N
i=1m

i
t

 - \BbbE \mu [mF (x)]

\BbbE \mu (m)

\Biggr) 

= 2(mj
t  - \widetilde mj

t )

\Biggl( 
1

N

N\sum 
i=1

\widetilde mi
tF (\widetilde xi

t) - \BbbE \mu [mF (x)]

\Biggr) 
/

\Biggl( 
1

N

N\sum 
i=1

mi
t

\Biggr) 
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+ 2(mj
t  - \widetilde mi

t)\BbbE \mu [mF (x)]

\Biggl( 
1

1
N

\sum N
i=1m

i
t

 - 1

\BbbE \mu (m)

\Biggr) 

\leqslant 4| mj
t  - \widetilde mj

t | 2 + 2

\bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

\widetilde mi
tF (\widetilde xi

t) - \BbbE \mu [mF (x)]

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ 2D2

\bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

mi
0  - \BbbE \mu 0

(m)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

,

where we use 1
N

\sum N
i=1m

i
t =

1
N

\sum N
i=1m

i
0 \geqslant 

1
2 , \BbbE \mu (m) = \BbbE \mu 0

(m), and the
boundedness of F in the last inequality.

Collecting these terms together to feed into (5.11), and sum up against j, we
have

d

dt

\left(  \BbbE 

\left[  1

N

N\sum 
j=1

| mj
t  - \widetilde mj

t | 2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right]  \right)  

\leqslant \widetilde C\BbbE 

\left[  1

N

N\sum 
j=1

| xj
t  - \widetilde xj

t | 2 +
1

N

N\sum 
j=1

| mj
t  - \widetilde mj

t | 2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right]  

+ \widetilde C\BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

\widetilde mi
tF (\widetilde xi

t) - \BbbE \mu [mF (x)]

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+

\bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

mi
0  - \BbbE \mu 0(m)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right]  ,

(5.12)

where \widetilde C depends on D, Mmax, t, and L.
Recall the definition of G in (5.6). We collect (5.9) and (5.12) to have

d

dt
G(t)\leqslant C(t)\BbbE 

\left[  1

N

N\sum 
j=1

| xj
t  - \widetilde xj

t | 2 +
1

N

N\sum 
j=1

| mj
t  - \widetilde mj

t | 2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right]  

+C(t)\BbbE 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

\widetilde mi
tF (\widetilde xi

t) - \BbbE \mu [mF (x)]

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+

\bigm| \bigm| \bigm| \bigm| \bigm| 1N
N\sum 
i=1

mi
0  - \BbbE \mu 0

(m)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Omega 
\right]  

\underbrace{}  \underbrace{}  
(vi)

=C(t) (G(t) + (vi)) ,

(5.13)

where C(t) depends on D, Mmax, t, L, and d. Note that term (vi) can be further
controlled using the law of large numbers: for the first term, let X = mF (x) be a

random variable. Then, \widetilde mj
tF
\Bigl( \widetilde xj

t

\Bigr) 
is a realization of X and we have

XN =
1

N

N\sum 
j=1

\widetilde mj
tF (\widetilde xj

t ) .

Since \{ (\widetilde xj
t , \widetilde mj

t )\} Nj=1 are i.i.d. samples of \mu , we have

\BbbE [| XN  - \BbbE [X]| 2| \Omega ]\leqslant \BbbE [| XN  - \BbbE [X]| 2]/\BbbP (\Omega )\leqslant Var[XN ]/\BbbP (\Omega )

\leqslant 
1

N
Var[X]/\BbbP (\Omega ) =\scrO 

\biggl( 
1

N

\biggr) 
,
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2764 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

where we use \BbbP (\Omega )\geqslant 1 - C
N . A similar bound also holds for the second term in (vi).

Combining with (5.13), we have

d

dt
G(t)\leqslant C(t)G(t) +\scrO 

\biggl( 
1

N

\biggr) 
with G(0) = 0 .

Finally, calling Gr\"onwall's inequality, we have G(t) \leqslant \scrO 
\bigl( 

1
N

\bigr) 
, which completes the

proof.

5.2. Large-time behavior. This section is dedicated to the proof of Theo-
rem 2.4. This theorem quantifies the large-time behavior of the PDE (2.4a). We note
that (2.7) and (2.10) are asymptotic and rate specific, respectively. Both proofs are
by contradiction. To start off, we first present two lemmas.

Lemma 5.3. Under the condition of Theorem 2.4, assume lim inft\rightarrow \infty F
\mu 

t > F\ast ,
then there exists \epsilon 0 > 0 such that for any t\geqslant 0, we have F

\mu 

t >F\ast + \epsilon 0.

At the same time, we have the following.

Lemma 5.4. Under the condition of Theorem 2.4, if there is an \epsilon > 0 so that
F

\mu 

t > F\ast + \epsilon for all t\geqslant 0, then the total mass
\int \int 

md\mu t(x,m)\rightarrow \infty as t\rightarrow \infty and is
not conserved.

The proofs of these two lemmas are found in Appendix B.6 Putting these two
lemmas together, we can prove the theorem.

Proof of Theorem 2.4. We prove (2.7) using proof by contradiction. This is to
assume (2.7) is not true, meaning lim inft\rightarrow \infty F

\mu 

t >F\ast . Then according to Lemma 5.3,
there exists \epsilon 0 > 0 such that F

\mu 

t >F\ast + \epsilon 0 for all t\geqslant 0. Setting \epsilon = \epsilon 0 in Lemma 5.4,
mass is not conserved, contradicting the property of the equation. Hence (2.7) has to
be true, namely,

lim inf
t\rightarrow \infty 

F
\mu 

t = F\ast .

To show (2.10), we again deploy a proof by contradiction and the argument is
rather similar to that of (2.7). Assuming that it is not true, then for all t\leqslant t\epsilon (mc),

F
\mu 

t \geqslant F\ast + \epsilon .

We will show this leads to a contradiction. Define \eta \epsilon to be the time so that

\eta \epsilon = arg sup
t\in [0,1]

\int 
\scrN \epsilon 

\int \infty 

mc

md\mu t(x,m) \Rightarrow 
\int 
\scrN \epsilon 

\int \infty 

mc

md\mu \eta \epsilon (x,m)> 0 .

Since the probability is nontrivial, one can sample a point in the set of \scrN \epsilon \times (mc,\infty ).
Starting with x(\eta \epsilon ) \in \scrN \epsilon and m(\eta \epsilon ) >mc, with the same calculation as in (B.6), we
get

x(t)\in \scrN \epsilon , m(t)> e\epsilon (t - \eta \epsilon )/2m(\eta \epsilon )\geqslant e\epsilon (t - 1)/2m(\eta \epsilon )

for any t > 1\geqslant \eta \epsilon , which makes\int 
\scrN \epsilon 

\int \infty 

mc

md\mu t(x,m)> e\epsilon (t - 1)/2

\int 
\scrN \epsilon 

\int \infty 

mc

md\mu \eta \epsilon 
(x,m) .

6The two lemmas require the assumption of a unique global minimum as stated in Assump-
tion 2.3. However, in the proof in Appendix B, we will discuss that this assumption can be relaxed,
but analysis needs to be altered.
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In particular, we choose t= t\epsilon (mc), then according to definition (2.9),\int 
\scrN \epsilon 

\int \infty 

mc

md\mu t\epsilon (mc)(x,m)> e\epsilon (t\epsilon (mc) - 1)/2

\int 
\scrN \epsilon 

\int \infty 

mc

md\mu \eta \epsilon 
(x,m)\geqslant 1 .

This contradicts the mass conservation:\int 
\scrN \epsilon 

\int \infty 

mc

md\mu t(x,m)\leqslant 1 \forall t\geqslant 1 .

Hence there is a t\leqslant t\epsilon (mc) so that F
\mu 

t <F\ast + \epsilon .

6. Numerical experiments. This section is dedicated to numerical results. We
will showcase numerical evidence that validates theoretical statements on deriving the

mean-field limit and the long time behavior of F
N
. Furthermore, we will also present

some numerical findings that are yet to be understood theoretically.
All numerical experiments were run on two classical nonconvex functions: the

Ackley type functions (in 1, 2, and 10 dimensions) and the Rastrigin type functions
in 1 dimension, defined as follows:

FA(x) = - A exp

\left(   - C
\sqrt{}    1

d

d\sum 
i=1

x2
i

\right)   - exp

\Biggl( 
1

d

d\sum 
i=1

cos(2\pi xi)

\Biggr) 
+A+ e+D,

FR(x) = 10d+

d\sum 
i=1

[x2
i  - 10cos(2\pi xi)] +D .

Throughout the numerical section, we chose the following parameters A= 20, C = 0.2,
andD= 0. The profiles of the two functions in 1 dimension are presented in Figure 6.1.
They are both highly oscillatory, presenting abundant local minima. Moreover, the
local minima for the Rastrigin function give very close function values to the global
minimum, and can easily confuse samples on convergence.

For the numerical evidence in section 6.1 we will use the following \sigma function in
the application of Algorithm 1.1:

\sigma \lambda ,\beta (m) =

\Biggl\{ 
\lambda exp

\Bigl( 
m

m - \beta 

\Bigr) 
, m< \beta ,

0, m\geqslant \beta .
(6.1)

4 2 0 2 4
x

0

2

4

6

8

10

12

14

F A
(x

)

(a) Ackley function.

4 2 0 2 4
x

0

5

10

15

20

25

30

35

40

F R
(x

)

(b) Rastrigin function.

Fig. 6.1. Nonconvex functions that will be used for the numerical examples when d = 1.
Note: color appears only in the online article.
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0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
m

0.0

0.2

0.4

0.6

0.8

1.0

,
(m

)

= 1/8
= 1/16
= 1/32
= 1/64

(a) Smooth \sigma .

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
m

0.0

0.2

0.4

0.6

0.8

1.0

,
(m

)

= 1/8
= 1/16
= 1/32
= 1/64

(b) Step-like \sigma .

Fig. 6.2. \sigma function for different values of the parameter \beta and \lambda = 1. Note: color appears only
in the online article.

The smooth decay of the function (see Figure 6.2(a)) gives different magnitudes of
noise to each particle depending on their mass, but eventually for sufficiently high mass
the noise will disappear. We only present three examples in this section. Extensive
numerical experiments are presented in Appendix C (see Figures C.12 to C.17).

For the numerical study in section 6.2 we will use the following \sigma function so we
have a stricter change in the application of the noise after a certain amount of mass:

\sigma \lambda ,\beta (m) = \lambda 

\biggl( 
 - 1

2
tanh(1000(m - \beta )) +

1

2

\biggr) 
.(6.2)

The hyperbolic tangent form of the function is chosen to closely resemble a discon-
tinuous cutoff function for samples whose weight is below \beta (see Figure 6.2(b)); this
means particles with smaller weights are encouraged to explore the landscape of the
objective with the same rate \lambda while all heavier particles are given zero stochasticity.
Experimentally we observe a very neat relation between \beta and N for a consistent
convergence rate, and we leave that to section 6.2.

To demonstrate the performance of the algorithm, we choose the experiments
where the initial swarm does not cover the global minimum basin, to rule out the
easy-to-converge situations. The convergence of the algorithm purely depends on the
balancing between Brownian motion and local gradient descent through mass transfer.

6.1. Validation of theoretical results. The first part of our simulation is to
showcase the theoretical results we had for Algorithm 1.1. For this, we will apply the
algorithm on the Ackley function for d = 1, 2, then Rastrigin for d = 1, and, finally,
to the Ackley function with d= 10. In all cases we will show the performance of the
algorithm and check its dependence on T and N .

6.1.1. Ackley function in lower dimensions. We experiment with the Ack-
ley function for d = 1 and d = 2. First, for d = 1, we pick N = 8 particles, \beta = 1/8,
\lambda = 1, and run the algorithm for step size h = 10 - 4 and 20000 iterations for a total
time of T = 2. Figure 6.3 demonstrates a few time instances of the particles; It is
clear that they gradually move towards the global minimum. We then tested the con-
vergence with N = 8, 16, 32, 64. Each run of the algorithm provides one trajectory of

F
N

t and, in simulation, we ran the algorithm 20 times and compute its expectation,
first and third quartiles. The solid lines in Figure 6.4 demonstrate the convergence of

\BbbE [FN

t ] in time, and the shaded areas show the difference between the first and third
quartiles.
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Fig. 6.3. Swarm movement (in red) for Ackley function in d= 1. Note: color appears only in
the online article.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

10 1

100

101

[F
A
(t)

]

N = 8
N = 16
N = 32
N = 64

Fig. 6.4. Expectation of F
N
t for different values of N for Ackley function in d= 1 in log-scale.

The shaded area shows the difference between the lower quartile and the higher quartile for F
N
t .

Note: color appears only in the online article.

Fig. 6.5. Swarm movement (in red) for Ackley function in d= 2. Note: color appears only in
the online article.

For d = 2, we pick N = 16 particles, \beta = 1/16, \lambda = 1 and we run the algo-
rithm for step size h = 10 - 4 and 20000 iterations for a total time of T = 2. In
Figure 6.5 we visualize the convergence of particles to the global minimum in a few
time instances. We repeat the experiment for the d= 1 case and compute the mean,

first and third quartiles of F
N

for different choices of N , and they are plotted in
Figure 6.6.
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

100

101
[F

A
(t)

]

N = 8
N = 16
N = 32
N = 64

Fig. 6.6. Expectation of F
N
t for different values of N for Ackley function in d= 2 in log-scale.

The shaded area shows the difference between the lower quartile and the higher quartile for F
N
t .

Note: color appears only in the online article.

Fig. 6.7. Swarm movement (in red) for Rastrigin function in d= 1. Note: color appears only
in the online article.

6.1.2. Rastrigin function in low dimension. The third test is conducted for
the Rastrigin function for d = 1. The choice of parameters are N = 8, \beta = 1/8, and
\lambda = 2. The step-size is h= 10 - 4 and we run it up to T = 500.

In Figure 6.7 we can see that the particles eventually find the global minimum

after a long time. The convergence of F
N

t , however, is significantly faster than finding
the global minimum. We also evaluate the mean-field convergence. Running the

experiment for 20 runs, we obtain 20 trajectories of F
N

t . We compute the mean, the
first and third quartiles, and plot them in Figure 6.8. It is clear that bigger N gives
a higher chance of achieving a lower value for F in time.

6.1.3. Ackley function in higher dimensions. The fourth experiment is to
evaluate the performance of the algorithm on a high dimensional function (Ackley
function for d = 10). The hope is the Brownian motion in the dynamics can help in
overcoming the curse of dimensionality. We set the parameters to be \lambda = 1, \beta = 1/N .
In Figure 6.9, we show the convergence in time of 20 runs of experiments using
Algorithm 1.1, and compare it to the solution to the deterministic system shown
in (4.1). The observation is that the deterministic system converges very quickly at
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0 2 4 6 8 10
t

100

101

[F
R
(t)

]
N = 8
N = 16
N = 32
N = 64

Fig. 6.8. Expectation of F
N
t for different values of N for Rastrigin function in d = 1 in log-

scale. The shaded area shows the difference between the lower quartile and the higher quartile for

F
N
t . Note: color appears only in the online article.

Fig. 6.9. Long time behavior of F
N
t for different values of N for the Ackley function in d= 10,

in log-scale, in the absence and presence of noise. Note: color appears only in the online article.

the initial steps, but it saturates at local minima, and the global optimization is never
achieved. On the contrary, Algorithm 1.1, using either 2000 or 200 samples, achieves
the global minimum for both, albeit with a slower convergence rate. We attribute
this to the randomness in the method and this observation confirms Theorem 4.1.
We also emphasize that the performance of the algorithm using a smaller number of
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2770 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

samples (200) is compatible to that using 2000, so a small number of samples has
already demonstrated impressive numerical performance in this example.

6.2. Numerical study. Though not the focus of the paper, we observe, through
running numerical simulations, some interesting algorithmic performances. We col-
lect these findings in this subsection. We first present studies on parameter tun-
ing. As shown earlier, the performance of the algorithm depends on the choice
of the \sigma function that relies on the configuration of the following three parame-
ters: \lambda , \beta , and N . While \lambda determines the strength of the Brownian motion,
the cutoff point \beta and its relation to N fully characterize the percentage of par-
ticles that are allowed to ``roam."" To fully understand the relation, we run Al-
gorithm 1.1 on the Ackley functions for d = 1 up to T = 1 with \sigma defined as
in (6.2) for \lambda = 1 using many choices of (N,\beta ). To be more specific, we choose
N = 8, 16, 32, 64 and \beta = 1/8, 1/16, 1/32, 1/64 and for each (N,\beta ) configuration,

we run the experiment 40 times for a collection of 40 trajectories of F
N

t . The mean

and variance of these F
N

t for different (N,\beta ) choices are presented, on log-scale in
Figure 6.10. We note that experimentwise, it seems that N = 2/\beta seems to give the

Fig. 6.10. Convergence rates for the Ackley functions for different values of N and \beta .
Note: color appears only in the online article.
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(a) t ∈ [0, 700]. (b) Zoom-in at t ∈ [0, 20]. (c) Zoom-in at t ∈ [680, 720].

Fig. 6.11. Long time behavior of F
N
t for (6.3). Note: color appears only in the online article.

most ideal convergence. Another observation is that the performance of the algo-
rithm is consistent across the cases when \beta N are set to be constants. Namely, the
convergence rate seem to agree along diagonals in Figure 6.10.

We then present the long time behavior of the algorithm performed on a variation
of the Rastrigin function from section 6.1.2,

FR(x) = 10d+

d\sum 
i=1

[2x2
i  - 10cos(2\pi xi)] +D(6.3)

with parameters chosen to be d= 1 and D= 0, and the same choices of \{ xi\} . In this
case, we run the simulation for a very long time till t\sim 700. As seen in Figure 6.11,
the error seems to saturate at around O(1) after t = 10, and the second dip occurs
at t= 690, dragging the error down to 0. The convergence takes place in a staggered
pattern. The conjecture is that the value of the local minimum of the Rastrigin
function is very close to that of the global one, and the samples stuck at the local
minimum for a very long stretch of time, accumulating all the mass. The lighter
``explorer"" uses this time to explore and find the global minimum. Before the very
small basin gets found, the local minimum takes the lead and the error stays at O(1),
and the second dip occurs when the global basin finally was found by one explorer,
and the mass gets transferred to it. We find this staggered pattern enlightening, and
future research is needed for spelling out the explicit dependence of this behavior on
different parameters.

Appendix A. Interacting versus noninteracting agents. In this appendix,
we investigate the effect of communication, and study the behavior of two systems
that produce pitfalls. In subsection A.1 we study basic properties of the deterministic
system (4.1) which governs noninteracting agents. In subsection A.2, we switch gears
to interacting agents, governed by the stochastic system (4.3) with mass communica-
tion passively adjusted according to x-values, and prove Theorem 4.2.

A.1. Properties of the deterministic system (noninteracting agents).

Proposition A.1. Given the N -particle system defined in (4.1), we have that

the provisional minimum F
N
(t) always decay in time:7

d

dt
F

N
(t)\leqslant 0 \forall t\geqslant 0, F

N
(t) =

1

M(0)

N\sum 
j=1

mj(t)F (xj(t)).(A.1)

7Note that the time dependent quantities in the deterministic case are denoted \square (t, . . .), e.g.,

xj(t), F
N
(t), \nu N (t,x), etc.
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2772 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

Proof. This comes from direct computation:

d

dt
F

N
(t) =

1

M(0)

\left(  N\sum 
j=1

\biggl( 
d

dt
mj(t)

\biggr) 
F (xj(t)) +mj(t)

d

dt
F (xj(t))

\right)  
=

1

M(0)

\left(   - N\sum 
j=1

mj
t

\Bigl( 
F (xj(t)) - F

N
(t)
\Bigr) 
F (xj(t)) - mj(t)

\bigm| \bigm| \nabla F (xj(t))
\bigm| \bigm| 2\right)  

= - 1

M(0)

N\sum 
j=1

mj
t

\Bigl( 
F (xj(t)) - F

N
(t)
\Bigr) 2
 - 1

M(0)

N\sum 
j=1

mj
t

\bigm| \bigm| \nabla F (xj(t))
\bigm| \bigm| 2 \leqslant 0 .

This concludes the proof.

Similar to its stochastic counterpart, we can also derive the mean-field limiting
equation in the deterministic case. This is expressed in terms of the limiting distri-
bution \nu (t,x). To be specific, we have the following proposition.

Proposition A.2. Let \{ xj(t),mj(t)\} Nj=1 denote the crowd of agents satisfying
the deterministic system (4.1) subject to initial data \{ xj(0),mj(0) = 1

N \} 
N
j=1, inde-

pendently drawn from random distribution \rho 0, and let \nu N (t,x) denote its empirical
distribution

\nu N (t,x) =

N\sum 
j=1

mj(t)\delta \bfx j(t)(x).(A.2)

Then its mean-field limit of the ensemble distribution, \nu N (t,x)\rightarrow \nu (t,x), satisfies

\partial t\nu (t,x) =\nabla \bfx \cdot (\nu (t,x)\nabla F (x)) - (F (x) - F
\nu 
(t))\nu (t,x),(A.3)

subject to \nu (0, \cdot ) = \rho 0(\cdot ). Here F
\nu 
(t), the weighted average, is

F
\nu 
(t) =

\int 
F (x)d\nu (t,x)\int 

d\nu (t,x)

.(A.4)

Proof. To derive the mean-field limit, we test the system with a test smooth
function \phi :

\BbbE \nu (t)[\phi ] =

\int 
\phi (x)d\nu (t,x) =

N\sum 
j=1

mj(t)\phi (xj(t)) .

We take the time derivative on the two sides of the equation. The left-hand side
provides

d

dt
\BbbE \nu (t)[\phi ] =

\int 
\partial t\nu (t,x)\phi (x)dx.(A.5)

Here the expectation is with respect to the randomly drawn initial data. The time
derivative of the right-hand side yields

d

dt

\Biggl( 
N\sum 
j=1

mj(t)\phi (xj(t))

\Biggr) 

= - 
N\sum 
j=1

mj
t \nabla \bfx \phi (x

j(t)) \cdot \nabla F (xj(t))\underbrace{}  \underbrace{}  
\.\bfx = - \nabla F (\bfx (t))

 - 
N\sum 
j=1

\phi (xj(t))mj(t)(F (xj(t)) - F (t))\underbrace{}  \underbrace{}  
\.m= - m(t)(F (\bfx (t) - F

\nu 
(t))

,

(A.6)
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2773

where we integrated the ODE (4.1). Note that the first term in (A.6) can be
written as

 - 
N\sum 
j=1

mj(t)\nabla \bfx \phi (x
j(t)) \cdot \nabla F (xj(t)) = - \BbbE \nu (t)[\nabla \bfx \phi \cdot \nabla F ]

=

\int 
\phi (x)\nabla \bfx \cdot (\nu (t,x)\nabla F (x))dx

using integration-by-parts, and the second term of (A.6) can be written as

N\sum 
j=1

\phi (xj(t))mj(t)(F (xj(t)) - F
\nu 
(t)) =\BbbE \nu (t)[\phi F ] - \BbbE \nu (t)[\phi ]\BbbE \nu (t)[F ]

=

\int 
\nu (t,x)\phi (x)F (x)dx - F

\nu 
(t)

\int 
\phi (x)\nu (x)dx.

Plugging the latter into (A.6) and combining it with (A.5) we recover (A.3).

Some properties of this continuous limit are straightforward. In particular, obvi-
ous observations made earlier in our discussion yield the following.

Proposition A.3. Let \nu be the mean-field limit satisfying (A.3). There holds
that

\bullet mass conservation: the total mass, M(t) :=
\int 
\nu (t,x)dx, is conserved in time,

d
dtM(t) = 0;

\bullet decrease of provisional mean: the weighted mean F
\nu 
(t) decreases in time,

d
dtF

\nu 
(t)\leqslant 0.

A.2. Proprieties of the stochastic system (interacting agents). We turn
to the proof of Theorem 4.2.

Proof. We may assume without loss of generality that F\ast = 0, and that the total
mass is normalized, \int \int 

md\mu 0(x,m) = 1,

so that \rho t(\cdot ) =
\int 
md\mu t(\cdot ,m) can be viewed as a probability density function in x.

Multiplying (4.4) by mF (x) and integrating, we obtain that, with a few integration
by parts,

d

dt
F

\mu 

t = - 
\int \int 

m| \nabla F | 2d\mu t(x,m) - 
\int \int 

m(F  - F
\mu 

t )
2d\mu t(x,m) +

\int \int 
m\Delta Fd\mu t(x,m) ,

and rewriting it using \rho ,

d

dt
F

\mu 

t = - \BbbE \rho (| \nabla F | 2) - Var\rho (F ) +\BbbE \rho (\Delta F ) .

Because \nabla \bfx F is L-Lipschitz according to the first condition in Assumption 2.1 and
F\ast = 0, we obtain

| \nabla F | 2 \leqslant 2LF (x) .

This implies the first term can be lower bounded by the expectation of F (x):

 - \BbbE \rho (| \nabla F | 2)\geqslant  - 2LF
\mu 

t .(A.7)
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2774 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

Since x\ast is the unique global minimum, there exists \epsilon \prime > 0 such that

F - 1([0, \epsilon \prime ])\subset BR(x\ast ) .

Now, we lower bound the last two terms:
\bullet Because F \leqslant D according to the second condition in Assumption 2.1 and

F\ast = 0, we obtain

Var\rho (F ) =\BbbE \rho (F
2) - (F

\mu 

t )
2 \leqslant DF

\mu 

t

\Biggl( 
1 - F

\mu 

t

D

\Biggr) 
\leqslant DF

\mu 

t ,

where we use Assumption 2.1, 0\leqslant F \leqslant D in the inequalities. This implies

 - Var\rho (F )\geqslant  - DF
\mu 

t .(A.8)

\bullet Because F (x) is \xi -strongly convex in the ball of BR(x\ast ), we obtain that

\Delta F \geqslant \xi d \forall x\in BR(x\ast )

and because \nabla F is L-Lipschitz, we have

| \Delta F | \leqslant dL ,\forall x\in \BbbR d .

To lower bound the last term, we first deploy the Markov inequality:

\BbbP (x\in BR(x\ast ))\geqslant \BbbP (x\in F - 1([0, \epsilon \prime ])) = 1 - \BbbP (F (x)\geqslant \epsilon \prime )\geqslant 1 - F
\mu 

t

\epsilon \prime 
.

Then, we have

\BbbE \rho (\Delta F )\geqslant d

\left(      \xi 

\Biggl( 
1 - F

\mu 

t

\epsilon \prime 

\Biggr) 
\underbrace{}  \underbrace{}  

contribution from BR(\bfx \ast )

 - L

\Biggl( 
F

\mu 

t

\epsilon \prime 

\Biggr) 
\underbrace{}  \underbrace{}  

contribution outside BR(\bfx \ast )

\right)      .(A.9)

Combining (A.7), (A.8), and (A.9), we obtain

d

dt
F

\mu 

t \geqslant d\xi  - F
\mu 

t

\biggl( 
2L+D+

d\xi 

\epsilon \prime 
+

dL

\epsilon \prime 

\biggr) 
.

Setting \epsilon = d\xi /
\Bigl( 
2L+D+ d\xi 

\epsilon \prime +
dL
\epsilon \prime 

\Bigr) 
, we obtain that d

dtF
\mu 

t \geqslant 0 if F
\mu 

t \leqslant \epsilon . This proves

(4.5).

Appendix B. Technical lemmas. We provide proofs of Lemmas 5.3--5.4, and
Lemma B.1 that was deployed herein.

Proof of Lemma 5.3. This is obtained by contradiction. Assuming the statement
is not true, meaning there is no such \epsilon 0 to make F

\mu 

t >F\ast + \epsilon 0, then inft\geqslant 0 F
\mu 

t = F\ast .
Considering lim inft\rightarrow \infty F

\mu 

t > F\ast , there must exist a finite time, denoted as t\ast \geqslant 0,
such that F

\mu 

t\ast = F\ast . According to Assumption 2.3, F has a unique global minimum
at x\ast , so at t\ast , \mu t\ast (x,m) must have the form of8

\mu t\ast (x,m) = \delta \bfx \ast (x)\otimes \eta (m) ,(B.1)

where \eta is a probability measure over m-dimensions supported on \BbbR +.

8We note here that if there are multiple global minima \{ xk\} Kk=1, the form of \mu t\ast (x,m) becomes

\mu t\ast (x,m) =
\sum K

k=1 \delta \bfx k (x) \otimes \eta k(m), where
\sum 

k \eta k has measure 1. The rest of the proof stays the
same, with x\ast replaced by the collection of xk. The proof of this lemma depends on Lemma B.1,
which can also be revised to accommodate the multiple global minima case.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 8

7.
68

.2
41

.1
31

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SWARM-BASED GD MEETS SIMULATED ANNEALING 2775

We will show below that \mu t\ast (x,m) in the form of (B.1) is an equilibrium. If so,
\mu t(x,m) = \mu t\ast (x,m) for all t > t\ast and, thus, F

\mu 

t = F\ast for all time after t\ast . This
contradicts the assumption that lim inft\rightarrow \infty F

\mu 

t >F\ast , completing the proof.
To show \mu t\ast (x,m) in the form of (B.1) is an equilibrium amounts to plugging the

form into (2.4a) and show the right-hand side vanishes. Since this is a probability-
measured solution with a Dirac delta on the x-domain, the proof has to be conducted
in the weak sense. Specifically, given any smooth test function \phi (x,m), we show the
right-hand side of (2.4a), when tested by \phi (x,m), vanishes:\int \int 

R.H.S (2.4a) | \mu =\delta \bfx \ast (\bfx )\otimes \eta (m) \times \phi (x,m)dxdm

= - 
\int \int 

(F (x) - F
\mu 

t )m\partial m\phi (x,m)d\mu t(x,m)\underbrace{}  \underbrace{}  
Term I

 - 
\int \int \left(  \nabla \bfx \phi (x,m) \cdot \nabla F (x)\underbrace{}  \underbrace{}  

Term II

+\sigma (m)\Delta \bfx \phi (x,m)\underbrace{}  \underbrace{}  
Term III

\right)  d\mu t(x,m) .

(B.2)

We will show all three terms are zero. Indeed,
\bullet since \mu t takes on the form of (B.1),

Term I =

\int \int 
(F (x) - F

\mu 

t )m\partial m\phi (x,m)d\mu t(x,m)

=

\int \int 
(F\ast  - F\ast )m\partial m\phi (x,m)d\eta (m) = 0 ;

(B.3)

\bullet Similarly,

Term II =

\int \int 
\nabla \bfx \phi (x,m) \cdot \nabla F (x)\delta x\ast (x)dxd\eta (m)

=\nabla F (x\ast ) \cdot 
\int 
\nabla \bfx \phi (x\ast ,m)d\eta (m) = 0 ;

(B.4)

\bullet To show Term III = 0, we note that

Term III =

\int \int 
\sigma (m)\Delta \bfx \phi (x,m)\delta x\ast (x)dxd\eta (m)

=

\int 
\sigma (m)\Delta x\phi (x\ast ,m)d\eta (m) = 0 ,

(B.5)

where in the last equation, we used Lemma B.1 and that Supp(\eta (m)) \subset 
[mc,\infty ).

Plugging (B.3)--(B.5) into (B.2), it is clear that \mu t\ast (x,m) = \delta \bfx \ast (x) \otimes \eta (m) is an
equilibrium, and thus \mu t(x,m) = \mu t\ast (x,m) for all t > t\ast , making F

\mu 

t = F\ast and
contradicting the assumption that lim inft\rightarrow \infty F

\mu 

t >F\ast .

Proof of Lemma 5.4. According to Assumption 2.3, the initial distribution satis-
fies (mc,\infty )\cap suppm(\mu 0(x,m)) \not = \emptyset , so using the diffusivity property in x-direction of
the Fokker--Planck equation, for \scrN \epsilon /2 as defined in (2.8), there must exist Tc > 0 such
that \int 

\scrN \epsilon /2

\int \infty 

mc

d\mu Tc
(x,m)> 0 ,

which means there is no trivial probability at Tc to find a sample in the set of \scrN \epsilon /2\times 
(mc,\infty ). Denote one such sample (xs(Tc),ms(Tc)), we are to show that
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2776 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

(a) (xs,ms)(t)\in \scrN \epsilon /2 \times (mc,\infty ) for all t > Tc;
(b) ms(t)> exp( \epsilon 2 (t - Tc))ms(Tc)> exp( \epsilon 2 (t - Tc))mc for any t > Tc.

Indeed, we recall its trajectory governed by the SDE:\Biggl\{ 
dxs(t) =  - \nabla F (xs(t))dt+

\sqrt{} 
2\sigma (ms(t))dWt,

d
dtms(t) =  - ms(t)

\Bigl( 
F (xs(t)) - F

\mu 

t

\Bigr) 
.

Since xs(Tc)\in \scrN \epsilon /2 and ms(Tc)>mc, then noting \sigma (ms(Tc)) = 0, we obtain

dxs(t)

dt

\bigm| \bigm| \bigm| \bigm| 
t=Tc

= - \nabla F (xs(t)),
dms(t)

dt

\bigm| \bigm| \bigm| \bigm| 
t=Tc

>
\epsilon 

2
ms(t),

where we used the fact that F
\mu 

t > F\ast + \epsilon while F (xs(Tc)) < F\ast + \epsilon /2 to obtain the
equation for ms. This dynamics suggests that F (xs(t)) keeps decreasing so xs \in \scrN \epsilon /2,
and ms(t) keeps increasing with an exponential rate:

ms(t)> exp
\Bigl( \epsilon 
2
(t - Tc)

\Bigr) 
ms(Tc)>mc ,

confirming (a)--(b). Accordingly,

\int 
\scrN \epsilon /2

\infty \int 
mc

md\mu t(x,m) =\BbbE (m(t)| x(t)\in \scrN \epsilon /2,m(t)>mc)\BbbP 
\bigl( \bigl\{ 

x(t)\in \scrN \epsilon /2,m(t)>mc

\bigr\} \bigr) 
\geqslant \BbbE (m(t)| x(T )\in \scrN \epsilon /2,m(T )>mc)\BbbP 

\bigl( \bigl\{ 
x(T )\in \scrN \epsilon /2,m(T )>mc

\bigr\} \bigr) 
\geqslant \BbbE 

\Bigl( 
exp

\Bigl( \epsilon 
2
(t - T )

\Bigr) 
m(T )| x(T )\in \scrN \epsilon /2,m(T )>mc

\Bigr) 
\BbbP 
\bigl( \bigl\{ 

x(T )\in \scrN \epsilon /2,m(T )>mc

\bigr\} \bigr) 
=exp

\Bigl( \epsilon 
2
(t - T )

\Bigr) \int 
\scrN \epsilon /2

\int \infty 

mc

md\mu T (x,m) ,

(B.6)

where we use (a) in the first inequality and (b) in the second inequality. This leads
to the fact that

limsup
t\rightarrow \infty 

\int 
\BbbR d

\int \infty 

0

md\mu t(x,m)\geqslant limsup
t\rightarrow \infty 

\int 
\scrN \epsilon 

\int \infty 

mc

md\mu t(x,m) =\infty ,

completing the proof.

Lemma B.1. Under the conditions of Theorem 2.4, let \mu t(x,m) solve (2.4a). If
at a time t\ast so that \mu t\ast (x,m) takes on the form of \delta \bfx \ast \otimes \eta (m) for some probability
measure \eta , then Supp(\eta (m))\subset [mc,\infty ).9

Proof. This can be seen by deploying a special test function. Set the test func-
tion \phi \ast (x,m) = | x  - x\ast | 2\xi (x), where \xi (x) is a compactly supported, nonnegative,

9We note that in the statement of the lemma, we assume \mu t\ast (x,m) has a form of one Dirac
delta located on x\ast . In the situation when there are multiple global minima \{ xk\} Kk=1, the proof

can be adjusted to handle the form of \mu t\ast (x,m) =
\sum K

k=1 \delta \bfx k \otimes \eta k(m), with the conclusion being
Supp(\eta k(m)) \subset [mc,\infty ) for all k. In the proof, we should employ a list of test functions with each
taking the form of \phi k(x,m) = | x - xk| 2\xi k(x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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smooth function such that \xi (x) = 1 in a neighborhood of x\ast . Naturally by definition,
\partial m\phi \ast (x,m) = 0. Testing it on the mean-field PDE (2.4a), we obtain that

d

dt

\int \int 
\phi \ast (x,m)d\mu t\ast (x,m)\underbrace{}  \underbrace{}  

Term I

= - 
\int \int \left(  \nabla \phi \ast (x,m) \cdot \nabla F (x)\underbrace{}  \underbrace{}  

Term II

+\sigma (m)\Delta \phi \ast (x,m)

\right)  d\mu t\ast (x,m) ,

(B.7)

where
\bigl( 
F (x) - F

\mu 

t

\bigr) 
\partial m(m\mu ) | \mu t\ast (\bfx ,m) = 0 and is dropped out upon testing, using the

same argument that showed (B.3). We will show that both Term I and Term II are
zero.

Indeed, denote A(t) :=
\int \int 

\phi \ast (x,m)d\mu t(x,m). According to the definition of \phi \ast ,
A(t)\geqslant 0 for all t. Meanwhile, A(t\ast ) =

\int 
\phi \ast (x\ast ,m)d\eta (m) = 0. As a consequence,

Term I =
d

dt

\int \int 
\phi \ast (x,m)d\mu t\ast (x,m) =

d

dt
A(t\ast ) = 0 .

Similarly Term II = 0 is due to the fact that \nabla F (x\ast ) = 0.
These together suggests

\int \int 
\sigma (m)\Delta \phi \ast (x,m)d\mu t\ast (x,m) = 0. Considering \mu t\ast (x,m)

= \delta \bfx \ast \otimes \eta (m) and that \Delta \phi \ast (x\ast ) = 2d, we have
\int 
\sigma (m)d\eta (m) = 0, and thus Supp(\eta (\cdot ))\subset 

[mc,\infty ).

Appendix C. Numerical experiments. In this section we present further nu-
merical evidence of the performance of our SSA Algorithm 1.1 for different types of 2
dimensionsl nonconvex functions. We used (6.1) as our \sigma function with different pa-
rameters and different numbers of particles in each case. These examples are selected
from [27], and in each plot below, we show the landscape of the objective function, the
convergence of the provisional minimum in time, and four time snapshots of available
samples. At the initial time, the samples are purposely removed from the global basin.

Fig. C.12. SSA applied to a Levy function, F (x, y) = sin2(\pi w(x))+(w(x) - 1)2[1+10 sin2(\pi w(x)
+ 1)] + (w(y) - 1)2[1 + sin2(2\pi w(y))] with w(x) = 1+ x - 1

4
. The parameters used are N = 16, \lambda = 2,

and \beta = 1/8. The global minimum is F (x\ast , y\ast ) = 0 at (x\ast , y\ast ) = (1,1). Top left: landscape of he
function. Lower left: long time behavior. Center and right: swarm movement in time. Note: color
appears only in the online article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2778 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

Fig. C.13. SSA applied to a Levy N.13 function: F (x, y) = sin2(3\pi x)+(x - 1)2[1+sin2(3\pi y)]+
(y - 1)2[1+sin2(2\pi y)]. The parameters used are N = 16, \lambda = 2, and \beta = 1/8. The global minimum is
F (x\ast , y\ast ) = 0 at (x\ast , y\ast ) = (1,1). Top left: landscape of the function. Lower left: long time behavior.
Center and right: swarm movement in time. Similarly to Figure C.1, we can see the provisional
minimum converges to the global minimum as the particles are able to accumulate around the global
minimum. Note: color appears only in the online article.

Fig. C.14. SSA applied to a drop-wave function: F (x, y) = - 1+\mathrm{c}\mathrm{o}\mathrm{s}(12
\surd 

x2+y2)

0.5(x2+y2)+2
. The parameters

used are N = 32, \lambda = 2, and \beta = 1/16. The global minimum is F (x\ast , y\ast ) =  - 1 at (x\ast , y\ast ) = (0,0).
Top left: landscape of the function. Lower left: long time behavior. Center and right: swarm
movement in time. This is a challenging example since the global basin is very small. Note: color
appears only in the online article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SWARM-BASED GD MEETS SIMULATED ANNEALING 2779

Fig. C.15. SSA applied to a Schaffer N.2 function: F (x, y) = 0.5 +
\mathrm{s}\mathrm{i}\mathrm{n}2(x2 - y2) - 0.5

[1+0.001(x2+y2)]2
. The

parameters used are N = 64, \lambda = 2, and \beta = 1/32. The global minimum is F (x\ast , y\ast ) = 0 at
(x\ast , y\ast ) = (0,0). Top left: landscape of the function. Lower left: long time behavior. Center and
right: swarm movement in time. This is also a challenging example since the global basin is very
small. Note: color appears only in the online article.

Fig. C.16. SSA applied to a Bukin N.6 function: F (x, y) = 100
\sqrt{} 

| y - 0.01x2| + 0.01| x + 10| .
The parameters used are N = 16, \lambda = 0.25, and \beta = 1/16. The global minimum is F (x\ast , y\ast ) = 0 at
(x\ast , y\ast ) = ( - 10,1). Top left: landscape of the function. Lower left: long time behavior. Center and
right: swarm movement in time. This is a very special example: it is observed that the particles
can reach the global basin with ease but since all local and global basins are very shallow, samples
with Brownian motion easily jump out. As a consequence, the provisional minimum oscillates very
wildly. Note: color appears only in the online article.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 8

7.
68

.2
41

.1
31

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2780 Z. DING, M. GUERRA, Q. LI, AND E. TADMOR

Fig. C.17. SSA applied to a Rastrigin function: F (x, y) = 20+2x2+2y2 - cos(2\pi x) - cos(2\pi y).
The parameters used are N = 16, \lambda = 2, and \beta = 1/8. The global minimum is F (x\ast , y\ast ) = 0 at
(x\ast , y\ast ) = (0,0). Top left: landscape of the function. Lower left: long time behavior. Center and
right: swarm movement in time. Similarly to the 1D Rastrigin case (see Figure 6.11), the provisional
minimum quickly decreases to a plateau, and stays there for a long time frame before descending
again. The major challenge in this example is that the local minimum has a very similar value to
the global minimum, and often, when found, tricks the swarm to saturate. Note: color appears only
in the online article.
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