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ENTROPY DECREASE AND EMERGENCE OF ORDER
IN COLLECTIVE DYNAMICS

EITAN TADMOR

In memory of Häım Brezis

Abstract. We study the hydrodynamic description of collective dynamics driven by veloc-
ity alignment. It is known that such Euler alignment systems must flock towards a limiting
“flocking” velocity, provided their solutions remain globally smooth. To address this ques-
tion of global existence we proceed in two steps. (i) Entropy and closure. The system lacks
a closure, reflecting lack of detailed energy balance in collective dynamics. We discuss the
decrease of entropy and the asymptotic behavior towards a mono-kinetic closure; and (ii)
Mono-kinetic closure. We prove that global regularity persists for all time for a large class of
initial conditions satisfying a critical threshold condition, which is intimately linked to the
decrease of entropy. The result applies in any number of spatial dimensions, thus addressing
the open question of existence beyond two dimensions.
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LJLL at Sorbonne University.

1

https://arxiv.org/abs/2506.17635v1


2 EITAN TADMOR

1. Introduction and statement of main results

We are concerned with the existence and large-time behavior of global smooth solutions
for the multi-dimensional Euler alignment system

ρt +∇x · (ρu) = 0,

(ρu)t +∇x · (ρu⊗ u+ P) = τ

∫
ϕ(x,y)

(
u(t,y)− u(t,x)

)
ρ(t,x)ρ(t,y)dy.

(1.1)

A solution pair of density-velocity, (ρ,u) : R+×Ω → R+×Rn, is sought subject to compactly
supported initial data

(
ρ(0,x),u(0,x)

)
=

(
ρ0(x),u0(x)

)
, either in the whole space, Ω = Rn,

or in the n-dimensional torus Ω = Tn. System (1.1) is the large-crowd hydrodynamic
description of ‘social agents’ identified by positions and velocities, {xi(t),vi(t)}Ni=1, N ≫ 1,
governed by the Cucker-Smale alignment model [CS2007]

ẋi = vi

v̇i =
τ

N

N∑
j=1

ϕ(xi,xj)(vj − vi).
(1.2)

Alignment dynamics is a canonical model governing emergence phenomena in collective
dynamics of flocking, swarming etc. The dynamics is driven by a non-negative symmetric
communication kernel, ϕ(x,y) = ϕ(y,x) ⩾ 0, with amplitude τ > 0. We have two main
examples of symmetric kernels in mind — the canonical Cucker-Smale class of metric kernels,
see [CS2007]

(1.3) ϕ(x,y) = ϕ(|x− y|),

and the class of topologically-based kernels [ST2020b]

ϕ(x,y) = ϕ1(|x− y|)ϕ2(dρ(x,y)), dρ(x,y) :=

∫
C(x,y)

ρ(t, z)dz,

reflecting the dependence on the mass in an intermediate ‘domain of communication’, C(x,y),
enclosed between x and y.
The Euler alignment system (1.1) involves the pressure P — a symmetric positive definite

tensor which should encode the thermodynamics of large-crowd collective dynamics. But
(1.1) is not a closed system: it lacks closure of P in terms of the macroscopic variables ρ and
u. This reflects the fact that unlike physical particles, the social agents engaged in collective
dynamics form a thermo-dynamically open system which is far from equilibrium and does
not admit a universal closure. Indeed, most of the relevant literature assumes a mono-kinetic
closure, P ≡ 0. Accordingly, our study of solutions of (1.1) proceeds in two main stages:
(i) We investigate a rather general class of so-called entropic pressures introduced in [Tad2023]
and conclude that their strong solutions must approach mono-kinetic closure. Indeed, strong
Euler alignment solutions with isentropic closure experience a uniform entropy decrease to
−∞, and if we reject such a scenario then we must impose mono-kinetic closure, P ≡ 0.
(ii) We consider the pressure-less or mono-kinetic Euler alignment, proving existence of global
smooth solutions under certain threshold conditions. This addresses the open question of ex-
istence for n ⩾ 3, extending the known results for dimensions n = 1, 2 [TT2014, CCTT2016,
HT2017].



ENTROPY DECREASE AND EMERGENCE OF ORDER IN COLLECTIVE DYNAMICS 3

1.1. The road to mono-kinetic closure. To investigate this mono-kinetic assumption we
let ρE denote the (total) energy associated with the pressure in (1.1) (here and below, |w|
denotes the ℓ2-norm of w and |w|∞ denote its L∞-norm),

(1.4) ρE := 1
2
ρ|u|2 + ρe, ρe := 1

2
trace(P),

Since the social agents engaged in collective dynamics are often driven by energy received
from the “outside”, the detailed energy balance associated with (1.1) may be less relevant,
[VZ2012, §1.1]. Instead, lack of thermal equilibrium in the form of closure equalities, can be
relaxed to certain inequalities, which are compatible with the decay of energy fluctuations.
We impose the notion of an entropic pressure in which P, augmented with arbitrary “heat-
flux” vector function q, are required to satisfy the inequality,

(ρE)t +∇x·(ρEu+ Pu+ q)

⩽ −τ
∫
ϕ(x,y)

(
2ρE(t,x)− ρu(t,x) · u(t,y)

)
ρ(t,y)dy.

(1.5)

This can be expressed in an equivalent form1 in term of an entropic inequality for the internal
energy, ρe, stating [Tad2023, Definition 1.1],

(1.6) (ρe)t +∇x · (ρeu+ q) + trace
(
P∇u

)
⩽ −2τ

∫
ϕ(x,y)ρe(t,x)ρ(t,y)dy.

The entropic inequalities (1.5) or (1.6) are flexible enough to cover pressure tensors derived
from an underlying kinetic formulation discussed in §2, as well as the mono-kinetic closure
P ≡ 0. They imply depletion of fluctuations and in particular, as we shall see later on, that
the pressure in entropic alignment dynamics approaches the mono-kinetic closure. In §3
we discuss several results which quantify this statement of “approach towards mono-kinetic
closure”. To state one of these results, we need the following notations.

Notations. We let ∇
S
u denote the symmetric gradient, (∇

S
u)ij =

1
2

(∂ui
∂xj

+
∂uj
∂xi

)
. We order

the real eigenvalues of ∇
S
u: λ− := λ1 ⩽ λ2 < . . . ⩽ λn =: λ+, and in general, given a closed

set X ⊂ R we let X+ and X− denote its largest, respectively smallest elements. We use ηc
to denote different positive constants. Finally, we use ϕ ∗ ρ to denote the average density, or
thickness,

ϕ ∗ ρ(t,x) :=
∫
ϕ(x,y)ρ(t,y)dy;

of course, in case of metric kernel, this coincides with the usual notion of convolution. In §3
we prove the following.

Theorem 1.1 (Decay towards mono-kinetic closure). Let (ρ,u,P) be a strong entropic
solution of (1.1) and assume the following threshold condition holds: there exists a constant,
ηc > 0, such that

(1.7) λ−(∇S
u)(t, ·) + τϕ ∗ ρ(t, ·) ⩾ ηc > 0.

1The formal manipulation (1.1)2 · u−(1.1)1 × |u|2
2 yields(

1
2ρ|u|

2
)
t
+∇x · ( 12ρ|u|

2u+ Pu)− trace(P∇u) = −τ

∫
ϕ(x,y)ρu(t,x) ·

(
u(t,x)− u(t,y)

)
ρ(t,y)dy.

Combining this equality with (1.6) is equivalent with (1.5).
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Then

∫
∥P(t,x)∥dx ⩽ e−ηct

∫
∥P0(x)∥dx.

1.2. Communications kernels and thickness. Different classes of communication ker-
nels ϕ(x,y) are treated in the literature, classified according to their short- and long-range
behavior where x ≈ y, and, respectively, |x − y| ≫ 1. The class of singular kernels
ϕ(x,y) ∼ |x− y|−α was treated in [FP2024] where it was shown that the enstrophy associ-
ated with strongly singular kernels, α ∈ [n, n+ 2), enforced mono-kinetic closure. Existence
and flocking behavior of the 1D mono-kinetic case with strongly singular kernels was studied
in [DKRT2018, ST2017a, ST2017b, ST2018].
In this paper we restrict attention to the case of bounded kernels, ϕ(·, ·) ⩽ ϕ+. The results
can be extended to the case of integrable kernel with weak singularity, ϕ(x,y) ∼ |x − y|−α

with α < n. Alignment with such weakly singular kernels were studied in [MMPZ2019].
Next, we make the distinction between long-range and short-range kernels. Assume that

ϕ(·, ·) admits a metric lower envelope, ϕ(x,y) ≳ φ(|x−y|), with decreasing radial φ. Heavy-
tailed kernels is the subclass of long-range kernels that naturally arise in connection with
the unconditional flocking behavior of (1.1), [HT2008, HL2009, CFTV2010, CFRT2010]∫ ∞

φ(r)dr = ∞.

Heavy-tails rule out short-range kernels with finite support which are important in appli-
cations. In this latter case, flocking is secured if the Euler alignment dynamics remains
uniformly non-vacuous, ρ ⩾ ρ− > 0 [Tad2021, Theorem 3], [Shv2024, §7.3].
We proceed by making the following thickness condition. This corresponds to the notion
of ball-thickness introduced in [Shv2024, §3.7.2]. The scenario of (uniform) thickness covers
both cases of long-range (– heavy-tailed) kernels and short-range (non-vacuous) kernels; this
will be discussed in §4 below.

Assumption 1.1 (Thickness). The following thickness condition holds∫ ∞
min
x
ϕ ∗ ρ(t,x)dt = ∞.

In particular, a uniform thickness condition holds if there exists a constant, c∗ > 0, such
that

(1.8) ϕ ∗ ρ(t, ·) ⩾ c∗ > 0.

1.3. Decrease of entropy and emergence of order. We restrict attention to scalar
pressure, P = pIn×n. In this case we have the isentropic closure, p = 1

n
trace(P) = 2

n
ρe, and

the entropic inequality (1.6) reads

pt + u · ∇xp+ γp∇x · u ⩽ −2τpϕ ∗ ρ, γ := 1 +
2

n
.

Next we manipulate — multiplying the last inequality by ρ−γ and adding a multiple of the
mass equation, −γργ−1p× (1.1)1, to find

(pρ−γ)t + u · ∇x(pρ
−γ) ⩽ −2τpρ−γϕ ∗ ρ.

We conclude that the entropy inequality we imposed in (1.6) amounts to an inequality on
the specific entropy, ln(pρ−γ),

(1.9) St + u · ∇xS ⩽ −2τϕ ∗ ρ < 0, S := ln(pρ−γ).
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The conclusion that entropy decreases in time is quite striking in the sense that it counters
the usual tendency of entropy to quantify disorganization as expressed by the second law of
entropy increase in physical systems. Ever since [Sch1944] stipulated that life maintains its
own organization by extracting order from its environment, stating “life ... feeds on nega-
tive entropy”, there have been many attempts to link living systems to a reversed second
law which drives organisms towards higher ordered content, [Cha1978, Ave2003]. We have
shown here that the self-organization of alignment dynamics decreases the entropy by com-
municating “information” in the whole flow-field through decrease of fluctuations. In §3 we
further elaborate on implications of the entropy decrease in alignment dynamics. Here is one
manifestation of (1.9) proved in §3.1.

Theorem 1.2. Let (ρ,u) be a strong entropic solution of (1.1) with isentropic closure
P = 2

n
ρeIn×n, and assume the thickness condition holds. Then there is an entropy decay

S(t, ·) t→∞−→ −∞, unless P ≡ 0.

Theorem 1.2 expresses the following dichotomy between two possible scenarios for a non-
vacuous strong isentropic solutions: either, for ρ, p > 0, there is large time decay towards a
mono-kinetic closure — in fact the uniform thickness (1.8) implies exponential decay uni-
formly for all x

(1.10) max
x

pρ−γ(t,x) ≲ e−2τc∗t t→∞−→ 0,

or else a mono-kinetic closure p ≡ 0. If we reject the first scenario then we conclude Euler
alignment system can admit global strong solutions only in the setting of mono-kinetic
closure.

1.4. Strong solutions with mono-kinetic closure. We now turn to investigate the exis-
tence of strong solutions of the alignment dynamics system (1.1) with mono-kinetic closure
P ≡ 0, 

ρt +∇x · (ρu) = 0,

ut + u · ∇xu = τ

∫
ϕ(x,y)

(
u(t,y)− u(t,x)

)
ρ(t,y)dy.

(1.11)

The 1D system (1.11) with metric kernel (1.3) admits global smooth solution if and only if
the initial condition satisfies the following lower critical threshold [CCTT2016], u′0+τϕ∗ρ0 >
0. This was extended to the class of uni-directional flows, u(t,x) := (u(t,x), 0, . . . , 0) with
u : R+ × Ω 7→ R, in [LS2020], and to 2D metric case in [HT2017]. In §4 we address
the open question of existence of solution of Euler alignment system (1.11) with general
symmetric kernels in n > 2 spatial dimensions. The case of metric kernels is summarized in
the following.

Theorem 1.3 (Global strong solutions with sub-critical data). Consider the mono-
kinetic Euler alignment (1.11) with metric communication kernel ϕ(x,y) = ϕ(|x − y|) > 0
satisfying a uniform thickness (1.8), ϕ ∗ ρ(t, ·) ⩾ c∗ > 0. The system is subject to initial
conditions (ρ0,u0) ∈ L1

+ ×W 1,∞ with velocity fluctuations which do not exceed,

(1.12) 8|ϕ′|∞ · δu0 < τc2∗, δu(t) := sup
x,y∈supp{ρ(t,·)}

|u(t,x)− u(t,y)|.

Assume that the initial data (ρ0,u0) satisfy a sub-critical threshold condition

(1.13) λ−(∇S
u0)(x) + τϕ ∗ ρ0(x) ⩾ ηc > 0, ηc :=

1
2
τc∗.
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Then the Euler alignment system (1.11)–(1.13) admits a global smooth solution, (ρ(·, t),u(·, t)) ∈
L1
+×W 1,∞(Rn), with uniformly bounded velocity gradient, |∇u(t, ·)|L∞ ⩽ max {|∇u0|L∞ , c∗, C0} <

∞.

Remark 1.1 (What does the threshold condition mean?). Considering the limiting
case τ = 0 then the threshold condition (1.13) requires λ−(∇S

u0)(x) > 0. In the one-
dimensional case, this reflects the fact that the inviscid Burgers’ equation admits global
smooth solution for increasing profile u′0 > 0; however, this is a rather restricted set of
initial profiles. Similarly, in the n-dimensional case, the threshold (1.13) with τ = 0 reflects
global smooth solutions of the pressure-less Euler ut + u · ∇xu = 0 for the restricted class
of initial configurations λ−(∇S

u0)(x) > 0 (for which ∇x · u0 > 0 excludes, for example,

|u(t, ·)| |x|→∞−→ 0). Thus, the essence of the threshold condition (1.13) is securing global ex-
istence for a large set of initial configurations, by allowing λ−(∇S

u0) (or ∇x · u0) to admit
negative values dictated by the local thickness, τϕ ∗ ρ. Observe that according (1.13), the
admissible values of λ−(∇S

u0) include the negative range

λ−(∇S
u0) ⩾ ηc − τϕ ∗ ρ, ηc − τϕ ∗ ρ ⩽ −1

2
τc∗, ηc =

1
2
τc∗.

This type of critical threshold which secures global regularity with negative ”initial slopes” as
long as they are “not too negative” was introduced in the context of Euler-Poisson equations
in [ELT2001, LT2002] and is found useful for Euler alignment models, [TT2014, CCTT2016];
see [Shv2024] and the references therein.

Remark 1.2 (Comparing the threshold conditions). It is instructive that the threshold
condition for global existence sought in (1.13), λ−(∇S

u0) + τϕ ∗ ρ0 ⩾ ηc > 0, is the same
condition we met earlier, (1.7), in the context of decay towards mono-kinetic closure.
We compare this threshold condition with the results available in current literature on the
global regularity of mono-kinetic Euler alignment system (1.11) in one- and two dimensions.
Global smooth solutions in the 1D case, and in the more general setup of uni-directional
flows, exist if and only if the initial configuration satisfies the initial threshold u′0(x) + τϕ ∗
ρ0(x) ⩾ 0, [CCTT2016, LS2020, Les2020]. This corresponds to the limiting case ηc = 0. For
the role of the zero set {x | u′0(x) + τϕ ∗ ρ0(x) = 0} we refer to [LLST2022].
A sufficient threshold for 2D regularity, [HT2017, Theorem 2.1], requires the initial threshold
∇ · u0 + τϕ ∗ ρ0 > 0 and (λ+ − λ−)(∇S

u0) ⩽ τδ0 with δ0 = 1
2
m0ϕ(D∞). Noting that

∇ · u = λ+ + λ− then

λ−(∇S
u0) + τϕ ∗ ρ0 =

λ+ + λ−
2

+ τϕ ∗ ρ0 −
λ+ − λ−

2
⩾
τϕ ∗ ρ

2
− τδ0

2
, ϕ ∗ ρ ⩾ m0ϕ(D∞).

Thus, this 2D result is covered by Theorem 1.3 subject to threshold λ−(∇S
u0)+τϕ∗ρ0 ⩾ ηc > 0

with ηc =
1
2
δ0.

2. Kinetic formulation

The passage from the agent-based description (1.2) to the hydrodynamic description (1.1)
goes through a kinetic formulation,

∂tf + v · ∇xf = −τ∇v ·Qϕ(f, f), (t,x,v) ∈ R+ × Ω× Rn,(2.1)



ENTROPY DECREASE AND EMERGENCE OF ORDER IN COLLECTIVE DYNAMICS 7

which governs the empirical distribution

f = fN(t,x,v) :=
1

N

N∑
j=1

δx−xj(t) ⊗ δv−vj(t),

and is driven by pairwise communication protocol on the right of (1.2)2

(2.2) Qϕ(f, f) :=

∫∫
Rn×Ω

ϕ(x,y)(v′ − v)f(t,x,v)f(t,y,v′)dv′dy.

The formal derivation of (2.1) was introduced in [HT2008] and was justified in increasing
order of rigor in [HL2009, CFTV2010, FK2019, NP2022, NS2022, PT2022]. For large crowds
of N agents, N ≫ 1, the dynamics (2.1) is captured by its first three limiting moments

which are assumed to exist in a proper sense: the density ρ(t,x) := lim
N→∞

∫
fN(t,x,v)dv,

momentum ρu(t,x) := lim
N→∞

∫
vfN(t,x,v)dv and pressure P(t,x) := lim

N→∞

∫
(v−u)⊗ (v−

u)fN(t,x,v)dv, governed by the Euler alignment system (1.1).

To address the lack of closure we consider the energy balance associated with the limiting

quadratic moment of (2.1) (which is assumed to exist) ρE(t,x) := lim
N→∞

∫
1

2
|v|2fN(t,x,v)dv,

(ρE)t +∇x · (ρEu+ Pu+ q) = −τ
∫
ϕ(x,y)

(
2ρE(t,x)− ρu(t,x) · ρu(t,y)

)
dy.

The total energy ρE admits a decomposition into its kinetic and internal parts, ρE =
1
2
ρ|u|2 + ρe, corresponding to the two-term decomposition2 |v|2 “=” |u|2 + |v−u|2, namely,

ρE = 1
2
ρ|u|2 + ρe, (ρe)(t,x) := lim

N→∞

1

2

∫
|v − u|2fN(t,x,v)dv = 1

2
trace(P).

The energy flux on the left, ρEu + Pu + q, is recovered as the quadratic moment of (2.1)
corresponding to the three-term decomposition,

|v|2v “=” |v|2u+ 2(v − u)⊗ (v − u)u+ |v − u|2(v − u).

This results in an energy flux expressed in terms of the pressure P and “heat flux” q(t,x) :=

lim
N→∞

1

2

∫
(v−u)|v−u|2fN(t,x,v)dv. To address the lack of closure problem we impose the

notion of an entropic pressure which relaxes the energy equality, requiring (P,q) to satisfy
the corresponding inequality (1.5)

(ρE)t +∇x · (ρEu+ Pu+ q) ⩽ −τ
∫
ϕ(x,y)

(
2ρE(t,x)− ρu(t,x) · u(t,y)

)
ρ(t,y)dy.

3. Decay of fluctuations towards mono-kinetic closure

We discuss various scenarios in which an entropic pressure decays towards mono-kinetic
closure.

2Here and below, “=” is interpreted as “equality modulo linear moments”, noting that linear moments vanish∫
(v − u)fN (t,x,v)dv = 0.
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Mono-kinetic closure with heavy-tailed kernels. The formulation of the entropy in-
equality in terms of the total energy is equivalent to imposing an instantaneous decay of
energy fluctuations. Indeed, integration of (1.5) implies

d

dt

∫ (
1
2
ρ|u|2(t,x) + ρe(t,x)

)
dx

⩽ −τ
∫∫

ϕ(x,y)
(
ρ|u|2(t,x) + 2ρe(t,x)− ρu(t,x) · u(t,y)

)
ρ(t,y)dy.

Symmetrization of the integrand on the left using the fact that

∫
ρu(t,x)dx ≡ m0, and

symmetrization of the integrand of the right using the assumed symmetry of ϕ, finally yields
the decay of fluctuations

d

dt

1

2m0

∫∫ (
1
2
|u(t,x)− u(t,y)|2 + e(t,x) + e(t,y)

)
ρ(x)ρ(y)dxdy

⩽ −τ
∫∫

ϕ(x,y)
(

1
2
|u(t,x)− u(t,y)|2 + e(t,x) + e(t,y)

)
ρ(x)ρ(y)dxdy.

(3.1)

We conclude the following result of [Tad2023, Theorem 4.1].

Theorem 3.1. Consider the Euler alignment system with heavy-tailed kernel

(3.2) ϕ(x,y) ≳ ⟨|x− y|⟩−θ, θ ⩽ 1, ⟨r⟩ := (1 + r2)
1/2

Let (ρ,u) be a non-vacuous strong solution of (1.1) with entropic pressure P. Let D(t) denote
the diameter of supp ρ(t, ·), and assume the dispersion bound,

(3.3)

∫
⟨D(t)⟩−θdt = ∞, D(t) := max

x,y∈supp ρ(t,·)
|x− y|.

Then unconditional flocking holds∫∫ (
1
2
|u(t,x)− u(t,y)|2 + e(t,x) + e(t,y)

)
ρ(t,x)ρ(t,y)dxdy

t→∞−→ 0,

and in particular, asymptotic mono-kinetic closure holds,

∫
∥P(t,x)∥dx t→∞−→ 0.

This shows that under the dispersion bound (3.3), the same mechanism that is responsible

for unconditional flocking, ∥u(t,x)−u(t,y)∥L2(dρ(x)dρ(y)
t→∞−→ 0, drives the alignment dynam-

ics with any entropic pressure towards mono-kinetic closure, ∥P(t, ·)∥L1 <2
∫
ρe(,x)dx

t→∞−→ 0.

Mono-kinetic closure with a threshold condition. The dispersion bound sought in
(3.3) can be replaced by a threshold condition. To this we revisit the entropy inequality

(1.6) which is re-written in terms of the re-scaled pressure P =
P
2ρe

(3.4) ∂t(ρe) +∇x · (ρeu+ q) ⩽ −
(
trace(P∇u) + τϕ ∗ ρ

)
2ρe(t,x), P :=

P
2ρe

Observe that P is a symmetric positive definite matrix with unit trace. For such unit-trace
matrices we have

trace(PM) ⩾ λ−(MS), MS :=
1

2
(M +M⊤).
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Indeed, if we let {λi > 0,wi} be the complete eigen-system of P then

trace(PM) =
∑
i

⟨PMwi,wi⟩ =
∑
i

λi(P)⟨Mwi,wi⟩ ⩾
∑
i

λi(P)λ−(MS) = λ−(MS).

In particular, therefore, (3.4) yields

∂t(ρe) +∇x · (ρeu+ q) ⩽ −2
(
λ−(∇S

u) + τϕ ∗ ρ
)
ρe(t,x).

We conclude that if the threshold condition (1.7) holds

(3.5) η(t,x) ≡ η(ρ(t,x),u(t,x)) := λ−(∇S
u)(t,x) + τϕ ∗ ρ(t,x) ⩾ ηc > 0,

then the decay of internal energy follows,

d

dt

∫
ρe(t,x)dx ⩽ −2ηc

∫
ρe(t,x)dx,

which in turn proves Theorem 1.1. The key question is whether such threshold inequality
η(t,x) ⩾ ηc > 0 persists in time. Observe that (3.5) is independent of the thermo-dynamical
state {e,P}, and in particular, therefore, applies to the mono-kinetic closure P = 0. This
motivates our search in §4 for a critical threshold in the space of initial configurations,
η(ρ0(x),u0(x)) ⩾ ηc > 0.

3.1. Entropy decrease and mono-kinetic closure. We restrict attention to the case of
isentropic closure p = (γ − 1)ρe which led to the reverse entropy inequality (1.9).

(3.6) St + u · ∇xS ⩽ −2τϕ ∗ ρ < 0, S = pρ−γ.

The Euler alignment system (1.1),(1.5) can be viewed as hyperbolic system of conservation
laws for w = (ρ, ρu, ρE), which we abbreviate as

wt + div f(w) = τA(w), τ > 0

where f(w) is the flux and A(w),

A(w) :=


0∫
ϕ(x,y)

(
u(t, y)− u(t,x)

)
ρ(t,x)ρ(t,y)dy

⩽
∫

ϕ(x,y)
(
2ρE(t,x)ρ(t,y)− ρu(t,x) · ρu(t,y)

)
dy

,
encodes the alignment terms on the right of (1.1),(1.5). In this context, (−ρS,−ρuS) forms
an entropy pair : combining (3.6) and the mass equation, (3.6)×ρ + (1.1)1 × S, implies that
the convex entropy −ρS is increasing,

U(w)t +∇x · F(w) > 0, U(w) = −ρS, F(w) = −ρuS,
in contrast to the celebrated statement of convex entropy decrease in presence of diffusion,
D(w), [Lax1957, God1962],[Kru1970, §7],[Lax1971, Daf2005],

wt + div f(w) = σD(w) ; U(w)t +∇x · F(w) < 0, σ > 0.

It follows that alignment and diffusion compete in driving the dynamics in different directions
of increasing order and, respectively, disorder. This is realized in the reversed entropy
inequality (3.6) which implies the maximum principle, S(t, ·) ⩽ maxS0, in contrast to the
minimum principle in the vanishing difussive Euler equations [Tad1986]

St + u · ∇xS ⩾ 0 ; S(t, ·) ⩾ minS0.
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In fact, uniform thickness in (3.6) implies

Sη
t + u · ∇xS

η < 0, Sη(t,x) := S(t,x) + 2τc∗t,

which in turn enforces the decay of S(t, ·) asserted in Theorem 1.2. We verify this by
setting3 H(S) := (S − S∗)

+ with S∗ to be determined. Since H(·) is non-decreasing then
(∂t + u · ∇x)H(Sη) ⩽ 0, and the entropy inequality follows

(ρH(Sη))t +∇x ·
(
ρuH(Sη)

)
⩽ 0.

Now let S∗ := max
x

(Sη)0 = max
x

S0, then integration of the entropy inequality yields∫
x

ρ(Sη(t,x)− S∗)
+dx ⩽

∫
x

ρ(S0(x)− S∗)
+dx = 0,

implying that the non-negative integrand on the left must vanish. Hence Sη(t,x) ⩽ S∗ ⩽
max

x
S0 and (1.10) follows,

pρ−γ(t,x) ⩽ Ke−2τc∗t, K = emaxxS0 .

Similar arguments apply to the uniform decay S(t, ·) t→∞−→ −∞ asserted in Theorem 1.2 under
a general thickness condition.

The “competition” between entropy production and entropy dissipation is demonstrated
in the one-dimensional Navier-Stokes alignment (NSA) equations which we abbreviate

(3.7) wt + f(w)x = τA(w) + σD(w), σD(w) := σ1

0u
1
2
u2


xx

+ σ2

00
T


x

CvT = e,

with the corresponding entropy balance

(3.8) (−ρS)t +
(
− ρuS + σ2(lnT )x

)
x
= 2τ(ϕ ∗ ρ)ρ− σ1

u2x
T

− σ2

(
Tx
T

)2

.

The entropy increase rate on the first term on the right of (3.8) follows from (3.6); the
terms involved the temperature T encode the usual entropy decrease associated with the
diffusion term in Navier-Stokes, σD(w). Observe that whenever the NSA dynamics (3.7)
with vanishing amplitudes τ, σ ≪ 1 develops sharp gradients, then the diffusive entropy
dissipation terms, σ1u

2
x, σ2T

2
x ≫ 1, dominate the bounded entropy increase due to alignment,

ϕ ∗ ρ ⩽ Const..
Finally, we note that the “competition” between entropy production and entropy dissipa-

tion is realized already at the kinetic level. We consider the kinetic formulation (2.1) driven
by both alignment and diffusion, [Shv2024, §6],[Shv2025]

∂tf + v · ∇xf + τ∇v ·Qϕ(f, f) = σ∆vf.

It follows that H(f) := f log f − f satisfies

(3.9) ∂t

∫
H(f)dv +∇x ·

∫
vH(f)dv = τϕ ∗ ρ

∫
fdv − 4σ

∫
|∇v

√
f |2dv.

The first term on the right shows that alignment increases the kinetic entropy functional∫
H(f)dv due to communication satisfying the uniform thickness assumption (1.8), τϕ ∗

3X+ :=

{
X X > 0
0 X ⩽ 0

denotes the “positive part of X”.
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ρf > τc∗f > 0. This reversed H theorem was already observed by us in [HT2008, §6]. In
contrast, the decrease of the kinetic entropy functional due to diffusion is dictated by Fisher
information −4σ|∇v

√
f |2 < 0. They balance each other to zero entropy production with a

Maxwellian profile

f(t,x,v) =
ρ

(2πθ)n/2
e−

|v−u|2
2θ , θ(t,x) ∼

(
σ

τ

ρ

ϕ ∗ ρ

)(γ−1)/γ

.

4. Alignment with mono-kinetic closure

Our main result settles the open question of existence of strong solutions of the multi-
dimensional mono-kinetic Euler alignment system (1.1) in n ⩾ 3 dimensions subject to
general C1 symmetric communication kernels.

4.1. Existence of strong solutions. The mono-kinetic closure reduces the momentum
equation (1.1)2 to (1.11)2

(4.1) ut(t,x) + u · ∇xu(t,x)=

∫
ϕ(x,y)(u(t,y)− u(t,x))ρ(t,y)dy, x ∈ supp (ρ(t, ·).

The existence result involves three quantities which do not increase in time: the mass

m(t) :=

∫
ρ(t,x)dx = m0, the velocity fluctuation, δu(t), (see (4.13) below),

(4.2) δu(t) ⩽ δu0, δu(t) := sup
x,y

{
|u(t,x)− u(t,y)| : x,y ∈ supp{ρ(t, ·)}

}
,

and the total kinetic energy, E(t) :=

∫
1
2
ρ|u|2(t,x)dx ⩽ E(0). We assume that their initial

amplitudes are not too large relative to the uniform thickness, c∗ > 0,

(4.3) (8α0 + 4β0)m0 < τc2∗,


α0 := |∇xϕ|∞|δu0|∞

β0 := |(∇x +∇y)ϕ|∞
(
2E0

m0

)1/2

.

Theorem 4.1 (Global strong solutions with sub-critical data). Consider the multiD
Euler alignment system (1.11) with C1 symmetric communication kernel, ϕ(·, ·) > 0, sat-
isfying the uniform thickness (1.8), ϕ ∗ ρ(t, ·) ⩾ c∗ > 0, and subject to initial conditions
(ρ0,u0) ∈ L1

+ ×W 1,∞ with bounded amplitudes (4.3).
Assume that the threshold condition holds:

(4.4) η(ρ0,u0) = λ−(∇S
u0)(x) + τϕ ∗ ρ0(x) ⩾ ηc > 0, ηc =

1
2
τc∗.

Then, Euler alignment (1.11),(4.3)–(4.4) admits a global smooth solution, (ρ(·, t),u(·, t)) ∈
L1
+ ×W 1,∞(Rn), and the following uniform bound holds

|∇u(t, ·)|L∞ ⩽ max {|∇u0|L∞ , c∗, C0} .

The constant C0 = C (maxx ∥∇u0∥,m0, ϕ+) is specified in (4.11) below.

In the canonical case of metric kernels, Theorem 4.1 holds with β0 = 0. This is summarized
in Theorem 1.3.
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Remark 4.1 (Large class of sub-critical initial data). Observe that the threshold con-
dition (4.4) is the same threshold condition which secured decay towards mono-kinetic clo-
sure for general class of entropic pressures in Theorem 1.1. It allows a “large” set of sub-
critical initial configurations (ρ0,u0) in (4.4) such that λ−(∇S

u0) admits negative values
λ−(∇S

u0) > ηc − τϕ ∗ ρ with ηc − τϕ ∗ ρ ⩽ −1
2
τc∗; consult Remark 1.1. One can state

the existence result with a smaller threshold ηc (thus allowing even larger range of “negative
slopes” λ−(∇S

u0)) at the expense of more restricted range of initial amplitudes (α0, β0).

Proof of Theorem 4.1. Our purpose is to show that the derivatives {∂jui} are uniformly
bounded. We proceed in four steps.
Step 1. We begin by identifying an invariant region associated with the threshold η(t,x) =
λ−(∇S

u)+τϕ∗ρ. The goal is to show that the threshold condition (4.4) secures a sub-critical
region in configuration space which persists in time, η(ρ0,u0) ⩾ ηc > 0 ; η(ρ(t, ·),u(t, ·)) ⩾
ηc > 0.
Let ′ abbreviate differentiation along particle path,

2′ := (∂t + u · ∇)2.

Differentiation of (4.1) implies that the n× n velocity gradient matrix, M = ∇u, satisfies

M ′ +M2 + τϕ ∗ ρM = τR,(4.5)

where R is the n× n matrix

Rij :=

∫
∂ϕ

∂xj
(x,y)

(
ui(t,y)− ui(t,x)

)
ρ(t,y)dy.

The following observation of the residual R is at the heart of matter; in the special case of
metric kernels it goes back to [CCTT2016] in the 1D case, and to [HT2017] in the 2D case,

(4.6) traceR = −(ϕ ∗ ρ)′ + ψ ∗ ρ, ψ(t,x,y) :=
∑
i

(
∂ϕ

∂xi
+
∂ϕ

∂yi

)
ui(t,y).

Verification of (4.6): integration by parts followed by the mass equation (1.1)1 yield

traceR =

∫ ∑
i

∂ϕ

∂xi
(x,y)

(
ui(t,y)− ui(t,x)

)
ρ(t,y)dy

= −
∫ ∑

i

∂ϕ

∂yi
(x,y)ui(t,y)ρ(t,y)dy −

∫ ∑
i

∂ϕ

∂xi
(x,y)ui(t,x)ρ(t,y)dy

+

∫ ∑
i

(
∂ϕ

∂xi
+
∂ϕ

∂yi

)
(x,y)ui(t,y)ρ(t,y)dy

=

∫
ϕ(x,y)∇y · (ρu)(t,y)dy − u · ∇x

∫
ϕ(x,y)ρ(t,y)dy +

∫
ψ(x,y)ρ(t,y)dy

=

∫
ϕ(x,y)×−ρt(t,y)dy − u · ∇xϕ ∗ ρ+ ψ ∗ ρ

= −(∂t + u · ∇x)ϕ ∗ ρ+ ψ ∗ ρ.
We decompose M into its symmetric and skew-symmetric arts, M = S + Ω and trace the
symmetric part of (4.5), S = ∇

S
u, to find

(4.7) S ′ + S2 + Ω2 + τϕ ∗ ρS = τRS, RS := 1
2
(R +R⊤).
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Since Ω is skew-symmetric then S ′ + S(S + τϕ ∗ ρI) ⩾ τRS. Hence, the minimal eigen-pair
of S, λ− := minλ λ(S) with the corresponding unit eigenvector w−, satisfies

(4.8) λ′−(t,x) + λ−(t,x)
(
λ−(t,x) + τϕ ∗ ρ(t,x)

)
⩾ τ⟨RSw−,w−⟩.

Here comes the main motivation for (4.6): we use it to express (4.8) in terms of η := λ−+τϕ∗ρ
as follows:

η′ + (η − τϕ ∗ ρ)η ⩾ τχ, χ := ⟨(RS − traceRS)w−,w−⟩+ ψ ∗ ρ,
and since by uniform thickness ϕ ∗ ρ ⩾ c∗ hence,

(4.9) η′(t,x) ⩾ η(τc∗ − η)− τ |χ|.
Our purpose is to secure that the quantity on the right of (4.9) is positive for the threshold
η ↓ ηc, so that η(t, ·) always increases whenever it approaches ηc = 1

2
τc∗ from above, and

hence η(ρ(t, ·),u(t, ·)) ⩾ ηc remains an invariant region in time. To this end, we need to
upper-bound |χ|.

The rank-one integrand in R implies |⟨RSw−,w−⟩| ⩽ |∇xϕ|∞δu(t)m0, and the velocity
fluctuations bound (4.2)2 yields4

(4.10)
∣∣〈(RS − traceR)w−,w−

〉∣∣ ⩽ 2α0m0 α0 = |∇xϕ|∞δu0;
the kinetic energy bound (4.2)3 yields

|ψ ∗ ρ| ⩽ β0m0, β0 = |(∇x +∇y)ϕ|∞

√
2E0

m0

.

Therefore, since the initial amplitudes assumed in (4.3) are not too large,

τ |χ| ⩽ τ |⟨(RS − traceRS)w−,w−⟩|+ τ |ψ ∗ ρ| ⩽ 1
4
(τc∗)

2,

and (4.9) yields

η′(t,x) > η(τc∗ − η)− 1
4
(τc∗)

2
|η=ηc = 0, ηc =

1
2
τc∗.

Thus, the initial threshold bound η(ρ0,u0) ⩾ ηc with ηc = 1
2
τc∗, will persist for all time,

η(ρ,u) ⩾ ηc.
Step 2. Next we upper-bound the skew-symmetric part of (4.5)

Ω′ + 1
2
(SΩ + ΩS) + τϕ ∗ ρΩ = τRΩ, RΩ := 1

2

(
R−R⊤) .

If (µ+, z+) is the maximal eigen-pair of Ω with purely imaginary eigenvalue µ+ such that
|µ+| = maxµ |µ(Ω)| and normalized eigenvector z+, then

µ′
+(t,x) + µ+(t,x)

(
⟨Sz+, z+⟩+ τϕ ∗ ρ

)
= τ⟨RΩz+, z+⟩.

The threshold established in step 1 tells us, ⟨Sz+, z+⟩+ τϕ ∗ ρ ⩾ ηc > 0 and hence

|µ+|′(t,x) + ηc|µ+(t,x)| ⩽ |µ+|′(t,x) + |µ+(t,x)|
(
⟨Sz+, z+⟩+ τϕ ∗ ρ

)
⩽ τ |⟨RΩz+, z+⟩|.

As before, |⟨RΩz+, z+⟩| ⩽ α0m0 <
1
8
τc2∗ and we end up with a uniform bound of the vorticity

whch involves the constant 1
8
τ 2c2∗/ηc =

1
4
τc∗,

∥Ω(t,x)∥ ⩽ γ0, γ0 := max
{
max

x
∥Ω0(x)∥, 14τc∗

}
.

4The entries integrated in Rij 7→ risj with ri = ϕxi and sj = ui(t,y) − ui(t,x) yields, ⟨r,w−⟩⟨s,w−⟩ −∑
risi ⩽ 2|∇xϕ|δu(t).



14 EITAN TADMOR

Step 3. Now we can bound ∥S(t,x)∥, that is, the maximal eigenvalue of λ+ = maxλ λ(S).
We revisit (4.7), this time with the upper bound of −Ω2, to derive the reverse inequality
(4.9) for ζ(t,x) := λ+(t,x) + τϕ ∗ ρ(t,x),

ζ ′(t,x) + τc∗ζ(t,x) ⩽ ζ ′ + τϕ ∗ ρζ ⩽ τ |⟨RSw+,w+⟩|+ ∥Ω∥2.
Again, since the initial amplitudes assumed in (4.3) are not too large, τ |⟨RSw+,w+⟩| ⩽
1
8
(τc∗)

2 and together with ∥Ω∥ ⩽ γ0, this yields

max
x

λ+(t,x) ⩽ max
{
max

x
λ+(S0)(x), δ0

}
, δ0 =

1
8
τc∗ +

γ20
τc∗

..

And finally, combined with the lower threshold λ−(S) ⩾ −τϕ ∗ ρ ⩾ −τϕ+m0 we conclude

∥S(t,x)∥ ⩽ max
{
max

x
λ+(S0)(x), δ0, τϕ+m0

}
.

Step 4. The bounds of S and Ω imply that ∇u is uniformly bounded in time

(4.11)

∣∣∣∣∂ui∂xj
(t,x)

∣∣∣∣ ⩽ max

{
max

x
∥∇u0∥,

1

4
τc∗, δ0, τϕ+m0

}
. □

Remark 4.2. Observe that the velocity fluctuations δu(t) decay exponentially in time, see
(4.17) below. If we use this improved bound in (4.10) then one can deduce an improved
threshold condition with larger set of restricted initial fluctuations, e.g., [ST2020a, Remark
6.1].

4.2. Uniform thickness and flocking. We now turn to the question of uniform thickness
assumed in Theorem 4.1 which is addressed in the next sections for the two main classes of
heavy-tailed and short-range kernels.
4.2.1. Uniform thickness with heavy-tailed kernels. Consider communication kernels, quan-
tified in terms of the Pareto-type tail

(4.12) ϕ(x,y) ⩾ C⟨|x− y|⟩−θ, θ ∈ (0, 1)

A key feature of such heavy-tailed kernels is that their alignment dynamics maintains global
communication: each part of the crowd with mass distribution ρ(x)dx communicates directly
with every other part with mass distribution ρ(y)dy. Indeed, in this case,

ϕ−(t) := min
x,y∈supp{ρ(t,·)}

ϕ(x,y) ≳ ⟨D(t)⟩−θ > 0, D(t) := diam(supp{ρ(t, ·)})

and for θ < 1 this implies that ϕ−(t) remains uniformly bounded in time away from zero.
The uniform-in-time bound follows by combining two standard arguments:

#1. Decay of velocity fluctuations. In the case of mono-kinetic closure, P ≡ 0, the mo-
mentum equation (1.1)2 decouples into n scalar equations, each of which satisfies a maximum
principle; in fact there is a decay quantified in [TT2014, Theorem 2.1],[HT2017, Theorem
1.1],

(4.13)
d

dt
δu(t) ⩽ −(τm0ϕ−(t))δu(t), δu(t) = max

x,y∈supp{ρ(t,·)}
|u(t,x)− u(t,y)|.

#2. The decay rate of δu(t),

(4.14a)
d

dt
δu(t) ⩽ −Cτm0⟨D(t)⟩−θδu(t)
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is dictated by the dispersion of supp{ρ(t, ·)}, which in turn does not exceed

(4.14b)
d

dt
D(t) ⩽ δu(t).

It follows [HL2009] that H(t) := Cτm0⟨D(t)⟩1−θ + (1− θ)δu(t) is non-increasing, Ḣ(t) ⩽ 0,
and therefore supp{ρ(t, ·)} is kept uniformly bounded in time,

(4.15) D(t) ⩽ D∞ :=

(
H0

τm0

) 1
1−θ

, H0 = Cτm0⟨D0⟩1−θ + (1− θ)δu0.

In particular, ϕ−(t) ⩾ C⟨D(t)⟩−θ ⩾ C⟨D∞⟩−θ > 0 and uniform thickness (1.8) follows

(4.16) ϕ ∗ ρ(t) ⩾ ϕ−(t)

∫
ρ(t,x)dx ⩾ c∗ := C⟨D∞⟩−θm0.

An alternative derivation of the uniform-in-time bounds is outlined in §4.3 below.

Remark 4.3 (Flocking I). The dispersion bound (4.15) implies an exponential decay of
velocity fluctuations

(4.17) δu(t) ≲ e−τm0D
−θ
∞ tδu0.

Since the mean velocity is time-invariant, u(t) :=
1

m0

∫
ρu(t,x)dx, there follows the flocking

behavior

(4.18) max
x∈supp{ρ(t,·)}

|u(t,x)− u0|∞ ≲ e−τm0D
−θ
∞ t|δu0|∞.

Flocking behavior for heavy-tailed metric-based kernels ϕ(x,y) 7→ ϕ(|x − y|) goes back to
Cucker-Smale [CS2007, HT2008, HL2009]. Here we observe that it extends to general heavy-
tailed symmetric kernels. It corresponds to the flocking behavior at the level of agent-based
description e.g., [MT2011, definition 1.1], in which a cohesive flock of a finite diameter
maxi,j |xi(t)−xj(t)| ⩽ D∞ <∞, is approaching a limiting velocity, maxi,j |vi(t)−vj(t)| → 0
as t→ ∞.

Remark 4.4 (Flocking II). The enstrophy in (3.1) drives the the decay of the energy
fluctuations

d

dt
δE(t) ⩽− Cτm0

⟨D(t)⟩θ
δE(t),

δE(t) :=

(∫∫ (
1
2
|u(x)− u(y)|2 + e(x) + e(y)

)
dρ(x)dρ(y)

)1/2

.

Observe that the last inequality applies to general Euler alignment systems (1.1), independent
of the specific closure for the pressure tensor. In particular, if we can control the dispersion

(4.19) D(t) ≲ ⟨t⟩γ, γ ⩾ 0,

then we would conclude that both — the L2-velocity fluctuations and internal energy fluctu-
ations decay to zero

(4.20) δE(t) ≲ e−ηt1−γθ

δE(0), η =
Cτm0

2(1− γθ)u∞
, γθ < 1.
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We mention three examples.
1 (A uniformly bounded velocity). |u(t,x)| ⩽ u∞ implies — in view of (4.14b), that (4.19)
holds with γ = 1, D(t) ⩽ D0 + 2u∞t, and L

2-flocking follows for θ < 1. This covers the
mono-kinetic scenario discussed in the previous remark.
2 (Matrix communication kernels). When (1.1) is driven by symmetric positive definite
matrix kernel, ϕ 7→ Φ(x,y), then a dispersion bound is secured with γ = 2/3, and (4.20)
follows for θ < 2/3, [ST2021, Proposition 3.1],[Tad2023, Appendix C].
3 (Singular kernels). When ϕ(x,y) ∼ |x−y|−α, α ∈ (n, n+2), their enstrpohy enforces that
(4.19) holds with γ = γα,n > 1 [Tad2023, Appendix E], and flocking follows for a restricted
set of θ < 1/γ. This proves flocking independent of the specific closure for the pressure and
independent whether the kernel ϕ(x,y) is long- or short-range.

4.2.2. Uniform thickness with short-range kernels. We restrict attention to compactly sup-
ported metric kernels (1.3). In this case, alignment takes place in local neighborhoods of size
⩽ D0, which is assumed much smaller than the diameter of the ambient space — the 2π-
periodic torus Ω = Tn. With lack of global, direct communication, existence and large-time
behavior of strong solution of (1.1) depends on having a bounded, non-vacuous density,

(4.21) 0 < ρ− ⩽ ρ(t,x) ⩽ ρ+ <∞.

In particular, uniform thickness (1.8) follows

(4.22) ϕ ∗ ρ(t) ⩾ c∗ :=

∫
ϕ(|x|)dx ρ− > 0.

Remark 4.5 (Flocking III). We mention the flocking of alignment dynamics with short-
range kernels in finite tours, as long as the the non-vacuous condition (4.21) holds, [Tad2021,
Theorem 3],[Shv2024, §4.4]. Again, flocking of non-vacuous dynamics holds independent of
the closure of pressure: the key question is securing the uniform-in-time bound (4.22) or,

as noted in [Tad2021, Remark p. 499] at least

∫ ∞
ρ−(t)dt = ∞ which in tun would lead

to (non-uniform) thickness,

∫ ∞
min
x
ϕ ∗ ρ(t,x)dt = ∞. This question was addressed in the

case of 1D singular kernel in [ST2017a, DKRT2018], but is open for bounded short-kernels.

4.3. Uniform bounds revisited. A necessary main ingredient in the analysis of (1.1)
is the uniform-in-time bounds of diam(supp{ρ(t, ·)}), ϕ−(t), and the amplitude of velocity

max
x∈supp{ρ(t,·)}

|u(x, t)|. An alternative approach to the standard arguments in §4.2.1 is advo-

cated in our work [ST2020a, Lemma 3.2]. Here, we extend our argument to general symmetric
kernels. The next lemma shows that whenever one has a uniform bound of |u(x, t)| + |x|
for the restricted class of lower-bounded ϕ’s which scales like O(1/minϕ), then it implies a
uniform bound of |u(x, t)|+ |x| for the general class of admissible ϕ’s (4.12).

Lemma 4.1 (The reduction to lower-bounded ϕ’s). Consider (1.1) with a with the
restricted class of uniformly lower-bounded ϕ’s:

(4.23) 0 < ϕ− ⩽ ϕ(x,y) ⩽ ϕ+ <∞.

Assume that the solutions (ρ̃, ũ) associated with the restricted (1.1),(4.23), satisfy the uniform
bound (with constants C± depending on ϕ+,m0 and E0)

(4.24) max
t⩾0,x∈suppρ̃(·,t)

(|ũ(x, t)|+ |x|) ⩽ max

{
C+ · max

x∈supp ρ̃0
(|ũ0(x)|+ |x|) , C−

ϕ−

}
.
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Then the following holds for solutions associated with a general class of admissible kernels ϕ
satisfying (4.12): if (ρ,u) is a smooth solution of (1.1), then there exists β > 0 depending on
the initial data (ρ0,u0), such that (ρ,u) coincides with the solution, (ρ̃β, ũbeta), associated
with the lower-bounded

ϕβ(x,y) := max{ϕ(x,y), β}

This means that if ϕ belongs to the general class of admissible kernels (4.12), then we can
assume, without loss of generality, that ϕ coincides with the lower bounded ϕβ and hence the
uniform bound (4.24) holds with ϕ− = β. The justification of this reduction step is outlined
below.

Proof of Lemma 4.1. By (4.12) one could take large enough r such that r ·min
|x−y|⩽r

ϕ(x,y) ⩾

2C− and

(4.25) r ⩾ 2C+ · max
x∈supp ρ0

(|u0(x)|+ |x|).

Let β := min
|x−y|⩽r

ϕ(x,y). By assumption, (4.24) holds for the lower-bounded ϕβ, so that

(4.26) max
t⩾0,x∈supp ρβ(·,t)

(|uβ(x, t)|+ |x|) ⩽ max
{
C+ · max

x∈supp ρ0
(|u0(x)|+ |x|), C−

β

}
where (ρβ,uβ) is the smooth solution of (1.1) with interaction kernel ϕβ, which we assume
to exist. By definition,

(4.27)
C−

β
=

C−

min
|x−y|⩽r

ϕ(x,y)
⩽
r

2
.

Fix t ⩾ 0, then (4.25)–(4.27) imply that the distance for any x,y ∈ supp ρβ(·, t) does not
exceed

(4.28) |x− y| ⩽ |x|+ |y| ⩽ 2max
{
C+ · max

x∈supp ρ0
(|u0(x)|+ |x|), C−

β

}
⩽ r.

Thus, for any x,y ∈ supp ρβ(·, t) there holds ϕ(x,y) ⩾ β and hence ϕβ coincides with ϕ for
(x,y) ∈ supp{ρ(t, ·)}, so that the dynamics of (ρβ,uβ) coincides with (ρ,u). □
Example. If the uniform lower bound ϕ(x,y) ⩾ ϕ− holds then according to (4.13)

δu(t) ⩽ δu0 · e−(τm0ϕ−)t,

and hence D(t) ⩽ D0 +
1

τm0ϕ−
. Therefore, existence of strong solutions and their flocking

behavior follows long range ϕ’s with Pareto’s tail (4.12).
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[LLST2022] D. Lear, T. M. Leslie, R. Shvydkoy and E. Tadmor, Geometric structure of mass concentration

sets for pressureless Euler alignment systems, Advances in Mathmematics 401(4) (2022) 108290.
[LT2002] H. Liu and E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Com-

munications in Mathematical Physics 228 (2002), 435-466.
[MMPZ2019] P. Minakowski, P.B. Mucha, J. Peszek and E. Zatorska, Singular Cucker-Smale dynamics. in

“Active Particles, Volume 2: Advances in Theory, Models, and Applications” (N. Bellomo, P. Degond,
E. Tadmor eds.), Springer 2019, pp. 201-243.

[MT2011] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior,
Journal of Statistical Physics 144(5) (2011) 923-947.

[MT2014] S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review 56(4)
(2014) 577-621.

[NP2022] R. Natalini and T. Paul, On the mean field limit for Cucker-Smale models. Discrete Contin. Dyn.
Syst. B. 27 (5) (2022) 2873-2889.

[NS2022] V. Nguyen and R. Shvydkoy, Propagation of chaos for the Cucker-Smale systems under heavy tail
communication, Comm. in PDEs 47(9) (2022) 1883–1906.

[PT2022] T. Paul and E. Trélat, From microscopic to macroscopic scale equations: mean field, hydrodynamic
and graph limits, arXiv:2209.08832. (2022)

[Sch1944] E. Schrödinger, What is Life – the Physical Aspect of the Living Cell. Cambridge University Press.
ISBN 978-0-521-42708-1.

http://home.thep.lu.se/~henrik/mnxa09/Chaitin1979.pdf
https://doi.org/10.1007/s00208-023-02776-7
https://doi.org/10.1007/s00208-023-02776-7


ENTROPY DECREASE AND EMERGENCE OF ORDER IN COLLECTIVE DYNAMICS 19

[ST2020a] R. Shu and E. Tadmor, Flocking hydrodynamics with external potentials, Archive Rational Mech.
and Anal. 238 (2020) 347-381.

[Shv2024] R. Shvydkoy, Environmental Averaging. EMS Surveys in Math Sci. 11 (2024), 277-413
[Shv2025] R. Shvydkoy, Global well-posedness and relaxation for solutions of the Fokker-Planck-Alignment

equations, arXiv:2412.20294v2.
[ST2017a] R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Trans. in Math. and

Applications, 1(1) (2017), 1-26.
[ST2017b] R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing II: flocking, Discrete

and Continuous Dynamical Systems-A 37(11) (2017) 5503-5520.
[ST2018] R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing III. Fractional diffusion

of order 0 < α < 1. Phys. D 376/377, 131-137 (2018)
[ST2020b] R. Shvydkoy and E. Tadmor, Topologically-based fractional diffusion and emergent dynamics

with short-range interactions, SIAM J. Math. Anal. 52(6) (2020) 5792-5839.
[ST2021] R. Shu and E. Tadmor, Anticipation breeds alignment, Archive Rational Mech. and Anal. 240

(2021) 203-241.
[Tad1986] E. Tadmor, A minimum entropy principle in the gas dynamics equations Applied Numerical

Mathematics 2 (1986), 211-219.
[Tad2021] E. Tadmor, On the mathematics of swarming: emergent behavior in alignment dynamics, Notices

of the AMS 68(4) (2021) 493-503.
[Tad2023] E. Tadmor, Swarming: hydrodynamic alignment with pressure, Bulletin AMS 60(3) (2023) 285-

325.
[TT2014] E. Tadmor and C. Tan, Critical thresholds in flocking hydrodynamics with non-local alignment,

Philosophical Transactions of the Royal Society A: Math., Phys. and Engin. Sciences 372.2028 (2014):
20130401.

[VZ2012] T. Vicsek and A. Zefeiris, Collective motion, Physics Reprints, 517 (2012) 71-140.

Department of Mathematics and IPST, University of Maryland, College Park.
Email address: tadmor@umd.edu

https://doi.org/10.1093/imatrm/tnx00
https://doi.org/10.1093/imatrm/tnx00

	1. Introduction and statement of main results
	1.1. The road to mono-kinetic closure
	1.2. Communications kernels and thickness
	1.3. Decrease of entropy and emergence of order
	1.4. Strong solutions with mono-kinetic closure

	2. Kinetic formulation
	3. Decay of fluctuations towards mono-kinetic closure
	3.1. Entropy decrease and mono-kinetic closure

	4. Alignment with mono-kinetic closure
	4.1. Existence of strong solutions
	4.2. Uniform thickness and flocking
	4.3. Uniform bounds revisited

	References

