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niques and nonlinear viscosity models are found to be regularization techniques that transform
the possibly ill-posed Navier–Stokes equation into a well-posed set of PDE’s. Spectral eddy-
viscosity methods are also considered. We show that these methods are not spectrally accurate,
and, being quasi-linear, that they fail to be regularizations of the Navier–Stokes equations. We
then propose a new spectral hyper-viscosity model that regularizes the Navier–Stokes equations
while being spectrally accurate. We finally review scale-similarity models and two-scale subgrid
viscosity models. A new energetically coherent scale-similarity model is proposed for which the
filter does not require any commutation property nor solenoidality of the advection field. We
also show that two-scale methods are mathematically justified in the sense that, when applied
to linear non-coercive PDE’s, they actually yield convergence in the graph norm.
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1. Introduction

1.1. Introductory comments

A common experience in everyday life is to observe the swirling motion of flu-
ids flowing past objects or through conduits as so-called eddies are created and
spun off to produce complicated flow patterns. Such phenomena are recognized
as examples of turbulent flow, and an understanding of turbulence, its quantifica-
tion, prediction, simulation, and control have become one of the most elusive and
important goals in science and engineering.

It is now generally accepted that the Navier–Stokes equations, modeling the
behavior of incompressible viscous fluids, describe accurately what is observed as
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turbulence. Hence, considering that enormous computing power is available, one
may be tempted to think that simulating numerically the Navier–Stokes equations
should resolve the turbulence question. Unfortunately, despite steady advances
in computing power, attempts at the Direct Numerical Simulation (DNS) of the
Navier–Stokes equations have been limited to rather low values of the Reynolds
number, Re. At the present time, simulating time-dependent flows at Reynolds
numbers greater than a few thousands is a daunting task. The reason for this very
limited success of DNS is rooted in the heuristic Kolmogorov estimate O(R9/4

e )
for the total number of degrees of freedom required to simulate flows at a given
value of Re. Considering the current pace of progress in computing power, this
estimate undercuts the prospect of DNS of large-Reynolds number flows to some
date possibly far in the future. Since the times of Reynolds and Boussinesq and
others, approximations of the Navier–Stokes equations through the use of so-called
turbulence models based on time-averaged or space-averaged quantities (Reynolds
Averaged Navier–Stokes models, k-ε models, etc.) have been used in engineering
applications as a means of overcoming, though often crudely, the formidable and, to
date, virtually impossible task of DNS. The situation is further complicated by the
absence of a complete mathematical theory of turbulence as described by either the
Navier–Stokes equations directly or any of the various turbulence models, with the
result that contemporary methods for studying such phenomena are often based
on heuristics, empiricism, and mathematically unjustifiable assumptions.

In mathematical terms, the turbulence question is an elusive one. Since the
bold definition of turbulence by Leray in the 1930’s [47], calling turbulent solution
any weak solution of the Navier–Stokes equations, progress has been frustratingly
slow. The major obstacle in analyzing the Navier–Stokes equations has to do with
the question of uniqueness of solutions, a question not yet solved owing to the
possibility that the occurrence of so-called vorticity bursts reaching scales smaller
than the Kolmogorov scale cannot be excluded.

In recent years, significant progress toward the development of useful turbu-
lent models has occurred based on the observation that the whole range of flow
scales may not be important in many significant engineering applications. In such
applications, global information on “large-scale” features of the flow is sought for
such physical quantities as momentum or internal energy. Hence, the notion that
global behavior could be well approximated by a turbulence model without having
to approximate accurately fine scales is viewed by many as a possible breakthrough
in turbulence modeling. This has led modelers to devise artifacts for representing
the interaction between the unreachable small scales and the large ones. These
models are commonly known as Large Eddy Simulation (LES) models. Many LES
models have been proposed, but no satisfactory mathematical theory for LES has
yet been found.
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1.2. Objectives of the paper

Our goal in the present paper is to report important mathematical results on LES
modeling and to identify and elucidate several mathematical issues that stand in
the way of developing a complete theory.

We review several classes of LES techniques for which we attempt to pro-
vide mathematical justifications. In particular, we show that some filtering tech-
niques (i.e Leray mollifiers, NS-α model) and some nonlinear viscosity models (i.e.
Smagorinsky) are indeed regularization techniques that transform the possibly ill-
posed Navier–Stokes equations into a well-posed set of PDE’s, thus giving strong
mathematical support to these LES techniques.

Another significant aspect of LES theory, and one we shall address in this ex-
position, is the close relationship between mathematical properties of LES models
and the numerical methods used to implement them in specific applications. This
relationship was pointed by Ferziger [14]: “In general, there is a close connection
between the numerical methods and the modeling approach used in simulation;
this connection has not been sufficiently appreciated by many authors.” In re-
sponse to Ferziger’s observation, we study the implementation of the Smagorinsky
model; we conclude that, for the model to be mathematically coherent, the so-
called “Smagorinsky constant” should not be constant, but should increase as the
mesh is refined (or should take on values at least two to four times larger than
what is usually recommended in the literature).

We also consider spectral eddy-viscosity methods. We show that this class of
methods is closely related to the spectral viscosity methods introduced to solve
nonlinear scalar conservation laws. Contrary to spectral viscosity methods, we
show that eddy-viscosity methods cannot be spectrally accurate. Moreover, these
techniques being quasi-linear, they are not strong enough to regularize the Navier–
Stokes equation. We then propose a new class of spectral hyper-viscosity methods
that regularize the Navier–Stokes equation while being spectrally accurate.

We finally review scale-similarity methods and two-scale subgrid viscosity tech-
niques. We show that scale-similarity models are not energetically coherent and
cannot be numerically implemented if the filter involved does not commute with
differential operators and if the discrete vector fields are not exactly solenoidal.
We propose a new scale-similarity model that is energetically coherent and whose
implementation in weak form does not require the filter to satisfy the commutation
property nor the advection fields to be solenoidal. The best mathematical justifi-
cation we suggest for two-scale subgrid viscosity methods is that these techniques
are very similar in their numerical implementation to another class of stabilization
techniques that have been introduced to solve non-coercive PDE’s and which are
based on subgrid viscosity.

We finally conclude this paper by proposing mathematical criteria for selecting
LES models.
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1.3. Organization of the paper

The paper is organized as follows. In Section 2, we recall the energy cascade
phenomenon and Kolmogorov scaling theory. We also cite some of the latest
noteworthy mathematical results that rigorously corroborate this phenomenon.
We then review in Section 3 the filtering method which stands out as the paradigm
of LES for many authors. We point out that filtering may yield a paradox which,
to our best knowledge, has not been recognized in the literature. We demonstrate
also that filtering, if done correctly, falls into the class of regularization techniques
that solve the uniqueness question. In Section 4, we study the Smagorinsky model.
We show that this model belongs to the class of p-Laplacian regularizations and
solves the uniqueness question as well. In Section 5, we analyze models based on
spectral eddy-viscosity. We underline an analogy between these methods and the
spectral viscosity methods which have been designed to be spectrally accurate and
to guarantee convergence to the entropy solution when applied to scalar nonlinear
conservation laws. We also propose a new spectral hyper-viscosity method which
is spectrally accurate and regularizes the Navier–Stokes equations. In Section 6,
we review models based on scale-similarity and two-level subgrid viscosity. We
reformulate scale-similarity models in the framework of two-level approximation
techniques and propose a new scale-similarity formulation preserving the energy
pointwise. We finally show that two-level subgrid viscosity models are numerical
methods that have stabilizing properties guaranteeing optimal convergence in some
relevant graph norm when approximating non-coercive equations.

1.4. Notations and preliminaries

In this section we introduce notations that will be used throughout the paper. We
also recall the definitions of standard functional spaces for the reader’s convenience.

Unless explicitly stated, the fluid domain Ω is assumed to be an open bounded
subset in R

3 with a Lipschitz regular boundary Γ. When Ω = (0, 2π)3 and periodic
boundary conditions are enforced in the three space directions, the domain Ω is
referred to as the 3D-torus.

Real and complex-valued vectors/tensors are denoted in bold face. For any real
and complex-valued vectors/tensors we denote by | · | the Hermitian norm, i.e. the
�2-norm, and for any multi-index k ∈ Z

d we set |k|∞ = max1≤i≤d |ki|, i.e. the
�∞-norm.

For 1 ≤ p ≤ +∞, we denote by Lp(Ω) the complex vector space of Lebesgue
measurable functions such that

1)
∫
Ω
|f(x)|p dx < +∞, if 1 ≤ p < ∞

2) inf{M, |f(x)| < M for a.e. x ∈ Ω} < +∞, if p = ∞.
Partial derivatives of a function v with respect to variable ξ are denoted by ∂ξv;

in the case in which v depends only on ξ, we will write dξv. As usual, Wm,p(Ω)
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is the Sobolev space composed of functions that are in Lp(Ω) and whose partial
derivatives up to order m are in Lp(Ω). We will use Hm(Ω) to refer to the space
Wm,2(Ω). H1

0 (Ω) is the subspace of H1(Ω) composed of functions which vanish
at the boundary. We shall denote by ‖ · ‖m,p the norm of Wm,p(Ω), making no
distinction between the norms of scalar-valued and vector-valued function. When
no confusion is possible we also denote by ‖ · ‖0 the norm of L2(Ω).

1.5. Navier–Stokes equations

Throughout this paper, we consider the Navier–Stokes equations:





∂tu + u ·∇u + ∇p − ν∇2u = f in Ω × (0, T )
∇· u = 0 in Ω × (0, T ),
u|Γ = 0 or u is periodic,
u|t=0 = u0,

(1.1)

where u0 is the initial data, f is a source term, and the density ρ is chosen equal to
unity. The choice of no-slip or periodic boundary conditions simplifies somewhat
the mathematical analysis without affecting the important features inherent to the
Navier–Stokes equations. We also introduce two spaces of solenoidal vector fields:

V = {v ∈ H1(Ω), ∇· v = 0, v|Γ = 0, or v is periodic},
H = {v ∈ L2(Ω), ∇· v = 0, v·n|Γ = 0, or v is periodic}.

The initial velocity u0 is assumed to be in H. We denote by PH the L2-orthogonal
projection of L2(Ω) onto H.

2. Energy cascade and Kolmogorov’s scaling theory

In this section, we review Kolmogorov’s scaling theory since it is very often re-
ferred to in LES, and, in order to provide a coherent introduction to this theory,
we also recall the vortex stretching mechanism. In addition, we quote recently
proven mathematical results which corroborate the energy cascade phenomenon
in turbulent flows and discuss issues related to the existence of attractors for the
Navier–Stokes dynamical system. For additional details on the material presented
here we refer to Doering and Gibbon [12] and Foias et al. [19].

This section is meant to convince non-mathematician readers that, although
the heuristic theory may give the feeling that everything is well understood, the
mathematical theory is incomplete due to the uniqueness question, which is still
open. Although this question is very often overlooked in practice, we show that it
has important practical consequences.

Even though most of the physical arguments presented herein are standard
to turbulence specialists, we feel it is important to bring them to the attention of
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those more mathematically-minded readers who may not be acquainted with these
notions.

2.1. The vortex stretching mechanism

We first rewrite the momentum equation in terms of the vorticity ω = ∇× u by
taking the curl of the momentum equation

∂tω + u ·∇ω = ν∇2ω + D · ω + ∇× f , (2.1)

where D = 1
2 (∇u + (∇u)T ) is the deformation tensor (also called strain rate

tensor). The evolution equation for ω resembles in many aspects the momentum
equation governing the velocity field u, except for one term, the so-called vortex
stretching term D · ω. This term explains some fundamental differences between
flows in two or three dimensions.

In two space dimensions, for instance in the (x, y) plane, the velocity u has
components (u, v, 0) which implies that the vorticity has a nonzero component
only in the z-direction, i.e., ω = (0, 0, ω). It immediately follows that the vortex
stretching term D ·ω vanishes identically and does not contribute to the evolution
of the vorticity field.

In three space dimensions, the term D ·ω does not necessarily vanish and may
give rise to a potentially strong local phenomenon referred to as the vortex stretch-
ing mechanism (a mechanism held responsible for intensifying the circulation in
tornadoes). Recall that D is symmetric, hence it is diagonalizable; furthermore,
the trace of D being zero (tr(D) = ∇· u = 0), D has at least one non-negative
eigenvalue. If it happens that ω is aligned with one eigenvector associated with
a positive eigenvalue of D, then the vorticity magnitude and the angular velocity
increase as long as the diffusive term ν∇2ω and the source term ∇ × f are not
strong enough to counterbalance this mechanism. From a physical point of view,
this implies that a fluid element would first contract in the direction perpendicular
to the vorticity vector, and then stretch along this direction in order for the angu-
lar momentum to be conserved (if dissipation is neglected). The vortex stretching
mechanism is held responsible for local amplification of the vorticity magnitude
and thus for the production of smaller and smaller scale structures in the flow
field. This phenomenon thus implies a transfer of energy from large length scales
to smaller ones, usually known as the energy cascade.

2.2. Fourier analysis and energy cascade

The study of homogeneous isotropic turbulence is usually performed on the pe-
riodic three-dimensional domain Ω = (0, L)3 using spectral analysis. Instead of
considering the 3D torus (0, 2π)3, we prefer to keep the dimension L as we will
subsequently use dimensional analysis. Since u(x, t) is square integrable in space,
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the velocity field can be expanded in terms of the Fourier series

u(x, t) =
∑

�

û(�, t) ei�·x,

where the wavenumbers � are given by � = 2πn/L, n ∈ Z
3, and where the Fourier

coefficients, or modes, satisfy:

û(�, t) =
1
L3

∫

Ω

u(x, t) e−i�·x dx.

The main advantage of such a decomposition is that it permits to distinguish the
various length scales in the velocity field, the length scale associated with the
wavenumber � being defined, for example, as 2π/|�|∞.

Taking the Fourier Transform of the Navier–Stokes equations, we can derive
the time evolution of each mode û(�, t):

dtû(�, t) + ν|�|2û(�, t) =

(

I − ��T

|�|2

)

·
[
f̂(�) − i

∑

�1+�2=�

[(û(�1, t) · �2)û(�2, t)]
]

(2.2)

where I is the unit tensor, I − ��T /|�|2 the projector onto divergence free vector
fields in wavenumber space, and f̂(�) the Fourier modes of the body force, assuming
f to be independent of time. The body force term f̂(�) supplies the energy to the
system at wavenumber � in the support of f̂ . We suppose here that it is only
significant for long wavelengths and provides for sufficient power to maintain the
system within a permanent turbulent regime. This term does not directly excite
the short scales present in the flow. The second term in (2.2) is the so-called
viscous dissipation term ν|�|2û(�, t). Because of the factor |�|2, viscous dissipation
is more effective at short rather than at large length scales. The last term is the
result of the Fourier transform of the nonlinear term u ·∇u. This term actually
allows for mode coupling in the wavenumber space, a mechanism which provides
for the activation of shorter and shorter length scales in the flow. Equation (2.2)
clearly shows that any triad (�1, �2, �3) are coupled if and only if one of these
wavenumbers is the sum of the other two. In other words, the nonlinear term
allows for the transfer of energy from the large scales, excited by the body force,
to the smallest scales, for which viscous dissipation becomes predominant. This
mechanism is usually referred to as the energy cascade.

The energy cascade was perhaps intuitively imagined by Leonardo da Vinci
as early as the sixteen century when he wrote: “. . . the small eddies are almost
numberless, and large things are rotated only by large eddies and not by small
ones, and small things are turned by both small eddies and large.” An alternative
description of the energy cascade is given by Lesieur [48] in the following terms: the
flow reaches an equilibrium state where the vortex stretching mechanism produces
an “infinite hierarchy of eddies; each of them sucking the energy of the bigger ones
on which they ride, while they are being sucked by the smaller eddies riding on
them” the feast stopping at the viscous dissipation scale.
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Note that the nonlinear term does not participate to the global kinetic energy
balance since

∫

Ω

(u · ∇u) · udx =
∫

Ω

u · ∇(1
2u

2) dx =
∫

Ω

∇· (1
2u

2u) dx = 0. (2.3)

Once again, it is clear that the role of the nonlinear term is to redistribute the
energy from the large scales to the small ones.

We will refer to this energy cascade mechanism again in the next section to
present Kolmogorov’s scaling theory. Meanwhile, we demonstrate how to decom-
pose the kinetic energy of the flow field into contributions from each wavenumber
or length scale. Indeed, after making use of Parseval’s equality, the instantaneous
mean value of the kinetic energy is given by

1
L3

∫

Ω

1
2
u2(x, t) dx =

∑

�

1
2
|û(�, t)|2 =

∑

k

{ ∑

|�|∞=k

1
2
|û(�, t)|2

}

where k = 2πn/L, n ∈ N. A possible decomposition of the kinetic energy is
therefore suggested as

1
2L3

‖u(·, t)‖2
0 =

2π

L

∑

k

E(k, t)

where the quantity

E(k, t) :=
L

2π

∑

|�|∞=k

1
2
|û(�, t)|2 (2.4)

defines the kinetic energy associated with wavenumbers � such that |�|∞ = k, or
equivalently, associated with the length scale 2π/k. Note that we have used the �∞

norm to define scalar wavenumbers k. We could also have used the �2 norm as it is
commonly done in the literature, but this requires to define spherical shells in the
spectral space and complicates unnecessarily the presentation without bringing
forth any new fundamental idea. We also refer to §2.4. where an alternative
definition of wavenumbers is used.

2.3. Kolmogorov’s scaling theory

When a homogeneous isotropic flow reaches a permanent steady-state regime, the
energy cascade mechanism suggests the following hypothesis:

The rate of energy cascading from the largest scales to the
finest ones is assumed to be constant and independent of time. (HK)

This hypothesis seems reasonable because the energy is supplied to the system by
the body force at large length scales, and is consumed by viscous dissipation at
the short scales. However, due to (2.3), we observe that the average energy input
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rate is the same as the average energy dissipation rate, which we denote by ε:

ε =
ν

L3
〈‖∇u‖2

0〉, (2.5)

where 〈·〉 denotes the time average, and where it is assumed that 〈‖∇u‖2
0〉 exists.

In the intermediate range, the energy is transferred by nonlinear effects. Supposing
that viscous effects are negligible for these scales, it follows that the energy E(k)
should depend only of k and ε and not directly on the viscosity; supposing that it
assumes the form

E(k) ∼ εakb

and invoking the dimensional relations (L for length and T for time)

[k] = [L]−1, [ε] = [L]2[T ]−3, [E(k)] = [L]3[T ]−2,

we obtain a = 2
3 and b = − 5

3 , giving the well-known formula:

E(k) = CKε
2
3 k− 5

3 , (2.6)

where CK is believed to be a “universal” dimensionless constant.
We now derive the Kolmogorov length scale λK , defined as the scale at which

inertial effects actually balance viscous dissipation. The length scale λK can be
viewed as the smallest active scale in the flow, or simply, as the smallest ener-
getically relevant scale. Since the Reynolds number measures the energetic ratio
between inertial terms and viscous terms, the Kolmogorov length scale can be
determined by: UkK

λK/ν ∼ 1, where UkK
is the velocity scale associated with

kK = 2π/λK and is obtained by using the scaling UkK
= (kKE(kK))1/2. Then,

by using relation (2.6) we obtain

λK = cKν3/4ε−1/4, (2.7)

where cK is a dimensionless constant which can be related to CK (see e.g. [12,
p. 55]).

Finally, we relate the Kolmogorov length scale to a global Reynolds number.
As for UkK

, we first define a macroscopic velocity scale U as

1
2
U2 :=

2π

L

2π/λK∑

k=2π/L

E(k).

Using (2.6), we observe that this sum is approximately equal to ε2/3L2/3, which
yields:

ε ∼ L−1U3. (2.8)

Now, from the definition of the Reynolds number Re = UL/ν and by using (2.8)
and (2.7) we infer:

λK

L
∼ R−3/4

e . (2.9)

This relation is widely used in computational fluid mechanics to estimate the
number of cells needed to fully resolve turbulent flows. For example, if one is
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interested in simulating a turbulent flow at Re = 1000 in a unit cube domain (L =
1) using finite difference or finite element methods, one would need to consider grid
sizes of order λK/L ∼ R

−3/4
e ∼ 5.6×10−3 in each direction, that is, approximately

(L/λK)3 ∼ R
9/4
e ∼ 5.6 million cells in total.

Kolmogorov’s scaling argument is both a simple and a surprising result. As-
tonishingly, the argument does not take into account the complex structure of the
nonlinear term of the Navier–Stokes equations. Actually “Kolmogorov’s similarity
theory does not rely on the Navier–Stokes equations. Kolmogorov [40] did not
even mention them.” (see Muschinski [59, p. 240]). It is merely based on an
intuitive interpretation of the vortex stretching and energy cascade mechanisms.
However, it is noteworthy that the scaling law (2.6) has been actually observed
in numerous laboratory experiments, especially in the small scale range (see e.g.
Kolmogorov [39], Lesieur [48, p. 87], or the review of Sreenivasan [70]). It is even
more remarkable that a mathematical result, proposed by Foias et al. [18] and
presented below, corroborates the correctness of Kolmogorov’s scaling theory.

2.4. Mathematical justification of Kolmogorov’s scaling theory

A quite simple mathematical justification of the energy cascade mechanism and
hence of the Kolmogorov’s scaling theory has been recently proposed by Foias et
al. in [18]. We summarize here the principal ideas.

The authors consider either periodic boundary conditions in the 3D-torus or
no-slip boundary conditions, assuming in the second case that Γ is C2. They in-
troduce the Stokes operator A = −PH∇2 : V ∩ H2(Ω) → H. Being positive and
self-adjoint, and its inverse compact, the Stokes operator possesses a basis of eigen-
vectors (wj)j≥0, which is orthonormal and complete in H, and the corresponding
eigenvalues are such that 0 < λ0 ≤ λ1 ≤ . . . λj → +∞, as j → ∞. In this basis,
any weak solution of the Navier–Stokes equations can be expanded as

u =
+∞∑

j=0

ûjwj .

At this stage of the exposition, it is convenient to introduce the following notations:

kj := λ
1/2
j uk :=

∑

λj=k2

ûjwj uk′,k′′ :=
∑

k′≤k<k′′
uk.

In other words, kj is the wavenumber associated with the eigenvalue λj ; uk is the
sum of all components of u that are indexed by the same wavenumber k; uk′,k′′ is
the partial expansion of u between wavenumbers k′ and k′′.

The Navier–Stokes equations (1.1) then reduce to
{

∂tuk + νAuk + (PH(u ·∇u))k = fk, ∀ k ≥ k0,

uk|t=0 = u0,k,
(2.10)
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where the source term f is assumed to be time independent, to belong to H, and
to be localized in the spectral space: i.e., it is assumed that there exist kf and
kf such that 0 < kf ≤ kf < +∞ and f = fkf ,kf

. We also introduce the medium
wavenumber kf as

kf =
‖A1/2f‖0

‖A−1/2f‖0

which naturally satisfies kf ≤ kf ≤ kf .
One of the key ingredients now consists in defining the time average of quan-

tities of interest (kinetic energy, enstrophy, etc.). Being given a function of time
g(t), our goal here is to give a sense to the limit:

lim
T→∞

1
T

∫ T

0

g(τ) dτ

for it may happen that this limit does not exist (think of g(t) = sin(log(1 + t)) +
cos(log(1 + t))). Let G be the set of bounded real-valued functions on [0,+∞)
and denote by G0 the subset of G whose functions admit a limit at +∞. Define
p : G −→ R such that p(g) = lim supt→+∞ g(t) and Λ0 : G0 −→ R such that
Λ0(g) = limt→+∞ g(t). It is clear that for all g and f in G, p(g + f) ≤ p(g) + p(f)
and p(γg) = γp(g) for all γ > 0. Furthermore, for all g in G we have Λ0(g) ≤ p(g);
as a result, owing to the Hahn–Banach theorem, there exists Λ : G −→ R, such
that Λ(g) = Λ0(g) for all g in G0 and for all g in G Λ(g) ≤ p(g); i.e. Λ is an
extension of Λ0 (see [19, p. 225] and [17] for more details). The operator Λ is the
generalized limit and we hereafter denote Λ(g) = Limt→+∞ g(t). Equipped with
this new tool, it is now possible to define time-averages for any function g in G by

〈g〉 = Lim
t→+∞

1
t

∫ t

0

g(τ) dτ. (2.11)

Actually, this definition can be broadened even more as shown in [19, p. 191].
Now we can define the average kinetic energy e = k3

0〈‖u‖2
0〉/2 and the aver-

age dissipation rate per unit time and mass ε = νk3
0〈‖∇×u‖2

0〉. We introduce
kK = (ε/ν3)1/4 and kT = (ε/2νe)1/2, the Kolmogorov and Taylor wavenumbers,
respectively. Introducing the characteristic length L0 = k−1

0 and the characteristic
velocity U such that e = U2/2, we can define the Reynolds number Re = UL0/ν.
Using standard energy estimates, it is easy to derive the following bound:

Re =
k

1/2
0 〈‖u‖2

0〉1/2

ν
≤ 〈‖A1/2u‖2

0〉1/2

νk
1/2
0

≤ ‖A−1/2f‖0

ν2k
1/2
0

. (2.12)

Then, the following theorem is proved in [18]:

Theorem 2.1. Provided Re is sufficiently large so that Re ≥ (k0/kf )1/2, there
exists a constant c such that

ε ≤ ck0U
3, kK ≤ ck0R

3/4
e , kT ≤ ck0R

1/2
e .
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This theorem is a rigorous justification, though still incomplete, of the estimates
on ε and kK established in (2.8) and (2.9) and of another standard estimate on kT

that can be obtained by Kolmogorov’s scaling theory.
The most striking result from [18] deals with energy fluxes. Taking the inner

product of (2.10) with uk′k′′ in H, taking the sum on k from some k′ to some
k′′ > k′, yields

1
2dt‖uk′,k′′‖2

0 + ν‖∇uk′,k′′‖2
0 = (fk′,k′′ ,uk′,k′′) + ek′(u) − ek′′(u), (2.13)

where we have set

ek(u) = (uk,∞ ·∇uk,∞,uk0,k) − (uk0,k ·∇uk0,k,uk,∞).

The quantity ek(u) can be interpreted physically as being the flux per unit time of
kinetic energy into the higher modes uk,∞ induced by vortex stretching. Taking
the time average of (2.13) and assuming k′′ > k′ > kf , we deduce

〈ek′(u)〉 − 〈ek′′(u)〉 = ν‖∇uk′,k′′‖2
0. (2.14)

Modulo some technical details pertaining to the possible loss of regularity as k′′ →
+∞ (the technical issue that is responsible for the uniqueness question), it is
possible to pass to the limit k′′ → +∞, so that equality (2.14) is replaced by the
inequality

〈ek′(u)〉 ≥ ν‖∇uk′,∞‖2
0. (2.15)

As a result, we conclude from (2.14)–(2.15) that for k > kf , the energy flux 〈ek(u)〉
is nonnegative and monotone decreasing. Hence, energy flows down from the scales
enforced by the forcing term to the small scales, as suggested by the arguments
on vortex stretching. From (2.14) it is now easy to derive the following bounds:

Theorem 2.2 (Foias et al. [18]). Provided k′′ > k′ > kf , we have

0 ≤ 1 − 〈ek′′(u)〉
〈ek′(u)〉 ≤

(
k′′

kT

)2
(

1 −
(

k′

kT

)2
)−1

and, provided k > kf , then

1 −
(

k

kT

)2

≤ k3
0ν〈‖∇uk,∞‖2

0〉
ε

≤ 1.

The two bounds established in this theorem have the following physical inter-
pretation. The first one implies that

if kT 
 k′′ > k′ > kf , then 〈ek′′(u)〉 ≈ 〈ek′(u)〉;
that is, the energy flux through wavenumbers k within the range kT 
 k > kf

is nearly constant, confirming the energy cascade scenario as imagined by Kol-
mogorov. The second bound yields

if kT 
 k > kf , then k3
0ν〈‖∇uk,∞‖2

0〉 ≈ ε;
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that is, for scales such that the corresponding wavenumbers k are within the
range kT 
 k > kf , the energy lost by viscous dissipation below these scales is
nearly independent of k and approximately equal to the energy dissipation rate ε,
confirming the well-known hypothesis by Kolmogorov stated in (HK).

2.5. Attractors of the Navier–Stokes equations

The attractors of autonomous dissipative dynamical systems characterize the long
time behavior of flows and are closely related to their stability properties. The
attractor is a compact subset of the phase space (the normed space L2(Ω) here)
toward which flow solutions converge after long time periods. Although there exist
various definitions of the dimension of a set, an upper bound on the dimension
of the attractor is obtained by taking the smallest N for which all N -dimensional
subsets of L2(Ω) (sets of initial states at t = 0 for example) contract to zero
volume as t → ∞ (see [12, p. 170–171] or [19, p. 117–118] for more details).
For example, the dimension of a steady-state flow (fixed point) is zero while the
dimension of a periodic flow (periodic orbit) is one. For more complex flows,
the attractor dimension is not necessarily an integer and the estimate (2.9) from
Kolmogorov’s scaling theory yields the widely accepted conjecture that the Navier–
Stokes equations should have a global attractor of dimension d ≤ O(R9/4

e ).
However, the question of whether a global attractor of the Navier–Stokes equa-

tions in 3D exists is an issue that is not yet settled. This question has important
practical implications, for knowing that an attractor exists and that this attractor
is finite dimensional would guarantee that long-time behavior of Navier–Stokes
solutions can reasonably be numerically approximated (i.e. using a finite number
of degrees of freedom).

The question of the existence of an attractor is intimately linked with the
problem of knowing whether time-dependent Navier–Stokes solutions are unique,
or, equivalently, of ascertaining that the time evolution governing the solutions is
deterministic. As surprising as it may be, this simple question is still open. The
main obstacle in the way is that it cannot be yet proven that the solutions to the
3D Navier–Stokes equations are smooth for arbitrarily long times. Up to now,
no a priori estimate has been found that guarantees that the enstrophy, usually
defined as ‖∇×u‖2

0, remains finite for all times; that is, no a priori estimate
guarantees that the vorticity does not blow up somewhere in the domain in finite
time. Note, however, that for a given forcing term f and a given initial data
u0, the quantity 1

t

∫ t

0
‖∇×u‖2

0 dτ is bounded; hence, the enstrophy is bounded
in the mean. Nevertheless, this bound does not preclude the enstrophy to blow-
up intermittently like (t − t0)α with −1 < α < 0. Hence, we cannot exclude a
priori the possible occurrence of rare (intermittent) vorticity bursts driving the
energy deep down to scales much shorter than the standard Kolmogorov scale.
At the present state of the art, one cannot prove or disprove mathematically that
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the energy cascade scenario does indeed stop at the Kolmogorov scale everywhere
in the domain. In other words, in the present level of understanding, we cannot
disprove the possibility that the nonlinear term (the vortex stretching mechanism)
may be so strong that one is not guaranteed that the linear viscosity is strong
enough to stop the cascade everywhere in the fluid domain.

If such a blow-up were to occur, the time-evolution of the solution would not
be unique; this would be unacceptable as deterministic Newtonian time evolu-
tion would be lost. Moreover, finite-time singularities would mean that the flow
would develop arbitrarily small-scale structures, violating the axiom of continuum
mechanics assuming a scale separation between individual atomic evolution and
collective hydrodynamics motions. In conclusion, though the uniqueness ques-
tion may seem to be an irrelevant issue, it is “actually intimately tied up with
the efficiency of the Navier–Stokes equations as a model for fluid turbulence” [12,
p. xii].

As a result, information on the attractor, or equivalently on the smallest active
scale of the flow, can be obtained only by assuming a priori some regularity on
the enstrophy. For instance, in the 3D-torus we have the following result proved
in Constantin et al. [11]:

Theorem 2.3. Assuming that the quantity

ε1 = lim sup
t→+∞

sup
u0∈H

1
t

∫ t

0

ν‖∇×u(τ, ·)‖2
0,∞ dτ,

is finite and defining the corresponding Kolmogorov scale λ1 = ν3/4ε
−1/4
1 , then the

Lyapunov dimension, dL, of the global attractor of the 3D Navier–Stokes equations
is bounded from above as follows:

dL ≤ c

(
L

λ1

)3

. (2.16)

Note that the fractal dimension dF (box counting) and the Hausdorff dimension
dH are such that dH ≤ dF ≤ dL, so the estimate (2.16) is actually a bound on
these three dimensions. This bound shows that the Kolmogorov scale, λ1, is the
smallest active scale of the flow if ε1 is finite.

Any attempt trying to weaken the smoothness hypotheses on the vorticity has
so far yielded suboptimal results. For instance, we have the following result proved
by Gibbon and Titi [24].

Theorem 2.4. Assuming that ε2 = νL−3 supt ‖∇×u‖2
0,2 is finite and defining the

corresponding Kolmogorov scale λ2 = ν3/4ε
−1/4
2 , we have the following bound on

dL:

dL ≤ c

(
L

λ2

)4.8

. (2.17)
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Hence, assuming that the enstrophy is finite for all times, the above estimate
shows that the smallest length scale � of the flow is

�

L
≥ c

(
λ2

L

)1.6

.

In other words, weakening the assumption on the regularity of the vorticity trans-
lates immediately into the possible existence of active scales, �, smaller than the
Kolmogorov scale λ2.

We conclude this section by recalling a consequence of the ladder theorem of
Doering et al. (see [3] and [12, p. 143]): if for some δ > 0, supt ‖u‖0,3+δ is finite
then no singularity can occur. The reader will note that the gap between what is
known to be bounded, i.e. supt ‖u‖0,2, and what should be bounded for the whole
Navier–Stokes analysis to fall neatly in place, supt ‖u‖0,3+δ, is frustratingly small.

3. The filtering concept in LES

Large Eddy Simulation, or simply LES, an acronym coined in the ground break-
ing paper of Leonard [46], has as its primary goal to modify the Navier–Stokes
equations in order to obtain a new system of equations which is more amenable
to approximate while retaining all the most energetic features of the unperturbed
problem. The classical idea is to use a filter which allows for the separation of
large and small length scales in the flow-field. Applying the filtering operator to
the Navier–Stokes equations provides a new equation governing the large scales,
except for one term involving the small velocity scales. Modeling this term in an
appropriate manner, a procedure commonly referred to as the closure problem, one
can arrive at a set of equations with only the large velocity (and pressure) scales
as the unknown. In this section, we first show that the closure problem associ-
ated with the filtering procedure actually gives way to a paradox. In addition, we
show another interesting result establishing that adequate filtering regularizes the
Navier–Stokes equations.

This section is organized as follows. First we introduce the filtering concept
and the closure problem; then we show that exact LES is possible but paradoxical.
In a third section, we show that the filtering technique introduced by Leray [47] in
the 1930’s is a good mathematical justification for LES in the sense that it yields
a well-posed problem. In a fourth section, we show that the Leray regularization
can be modified to be frame indifferent and we discover a link with the so-called
Navier–Stokes−α model [9]. In the last section, using a result by Duchon and
Robert [13, 63], we show that LES solutions computed by means of the Leray
regularization satisfy an energy inequality pointwise that Navier–Stokes solutions
computed without LES model might violate, thus giving another justification for
filter-based LES.

The main conclusions of this investigation can be summarized as follows:
(i) Exact LES is possible but paradoxical.
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(ii) Filtering à la Leray solves the uniqueness question, thus justifying filtering
as a mean to do LES.

(iii) Filtering à la Leray selects “dissipative” Navier–Stokes solutions.

3.1. Filtering operator and closure problem

Let us assume that we have at hand an operator (·) : w �−→ w with filtering
properties either in space or in time, or both in space and time. For the time
being, avoiding to be too specific about the nature of this filter, we simply assume
that the operator is linear and commutes with differential operators. For the
purpose of the present discussion, these properties are shared by most filters of
interest when Ω is the 3D torus. For examples of filters we refer the reader to [65].

Applying the filtering operator to the Navier–Stokes equations yields the new
system of equations:






∂tu + u ·∇u + ∇p − ν∇2u = f −∇· T,

∇· u = 0
u|Γ = 0, or u is periodic,
u|t=0 = u0,

(3.1)

where
T = u ⊗ u − u ⊗ u (3.2)

is usually referred to as the subgrid-scale tensor. In order to be able to solve (3.1)
for u without having to resort to u, i.e. to close the problem, the tensor T needs to
be expressed in term of u only. The closure problem which consists of finding an
accurate model T(u) for the subgrid-scale tensor T certainly represents the main
difficulty of LES.

3.2. The closure paradox

It is legitimate to believe that if Problem (3.1) can be closed exactly, i.e. without
invoking ad hoc hypotheses, the Holy Grail for turbulence would then be uncovered.
We show in the following that exact closure is actually possible.

Proposition 3.1. Assuming Ω to be the 3D-torus, exact closure of (3.1) is then
achievable.

Proof. This result was pointed out by Germano in [20, 21]. Let ε > 0 be a cutoff
scale. We consider the following filter (later referred to as the Helmholtz filter):
for any given function v, the filtered function v is defined as the solution to the
elliptic PDE:

v − ε2∇2v = v, (3.3)
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that is, v := (I − ε2∇2)−1v. From a theorem by Agmon–Douglis–Nirenberg, it is
shown that this filtering operator is continuous from Lq(Ω), 1 < q < +∞, onto
W2,q(Ω) (see e.g. [4, 68]). Furthermore, it can be shown that (·) commutes with
space and time derivatives. Hence, (·) is intuitively an acceptable filter. Then,
using the fact that

u ⊗ u = (u − ε2∇2u) ⊗ (u − ε2∇2u),

and since
u ⊗ u = u ⊗ u − ε2∇2u ⊗ u,

it follows that

Tij = (ui − ε2∇2ui)(uj − ε2∇2uj) − uiuj ,

= uiuj − ε2uj∇2ui + ui∇2uj + ε4∇2ui∇2uj − uiuj ,

= ε2∇2(uiuj) − uj∇2ui − ui∇2uj + ε4∇2ui∇2uj

= 2ε2∇ui · ∇uj + ε4∇2ui∇2uj ,

which is actually a closed-form of the subgrid-scale tensor. �

Remark 3.1. Another way to derive an exact closure involves defining the filter
by means of a mollifier. Let φ be a bounded positive function in R

3, fast decreasing
at infinity, such that

∫
R3 φdx = 1, and such that its Fourier transform does not

vanish. For instance, the Gaussian kernel φ(x) = π−3/2 exp(−|x|2) satisfies these
hypotheses. Then for ε > 0, define φε(x) = ε−3φ(x/ε) and set

v := φε∗v. (3.4)

Denoting by F the Fourier transform, we infer that

∀ u ∈ L1(Ω), u = F−1(F(u)/F(φ)).

Hence, in this case also, the subgrid-scale tensor can be expressed exactly in terms
of the filtered field.

The preceding results can actually be generalized by observing that exact clo-
sure is achieved whenever the filtering operator induces an isomorphism. Indeed,
filters (3.3) and (3.4) are isomorphisms. This is intuitively verified by the fact
that they do not remove information from the field they are applied to; they sim-
ply rescale the spectrum of the field. For instance, given some t > 0, filter (3.3)
induces isomorphisms between L∞(0, t;H) and L∞(0, t;H ∩H2(Ω)) and between
L2(0, t;V) and L2(0, t;V ∩H3(Ω)). Hence, this filter induces an isomorphism be-
tween the set of weak solutions of (1.1) and that of (3.1). As a result, filtering and
achieving exact closure is unlikely to improve the situation since, roughly speak-
ing, given that the two sets of weak solutions are isomorphic, one should expect to
use the same number of degrees of freedom for approximating the Navier–Stokes
equations as for approximating the filtered equations.

Formally speaking, we are faced with the following paradox:
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Filtering and achieving exact closure does not reduce the number of degrees
of freedom.

Of course from a mathematical point of view paradoxes are impossible. Paradoxes
are intimately related to human interpretations and human expectations. The
present paradox we point out is that filtering the NS equation and closing them
as accurately as possible, i.e. exactly, in the hope that the resulting problem will
be simpler to solve is a paradoxical program.

In conclusion, the program which consists in filtering the Navier–Stokes equa-
tions in the hope of simplifying the daunting task of approximating them has some
chance of success only if inexact closure is performed, i.e. information has to be
removed.

3.3. Leray regularization

The first outstanding result which involves filtering is the proof of existence of
weak solutions to the Navier–Stokes equation by Leray [47]. We assume here that
Ω is the 3D-torus (0, 2π)3. Denoting by B(0, ε) ⊂ R

3 the ball of radius ε centered
at 0, we consider a sequence of mollifying functions (φε)ε>0 satisfying:

φε ∈ C∞
0 (R3), supp(φε) ⊂ B(0, ε),

∫

R3
φε(x) dx = 1. (3.5)

Defining the convolution product φε∗v as:

φε∗v(x) =
∫

R3
v(y)φε(x − y) dy,

Leray suggested to regularize the Navier–Stokes equations as follows:





∂tu + (φε∗u) ·∇u + ∇p − ν∇2u = φε∗f ,
∇· u = 0,

u is periodic,
u|t=0 = φε∗u0,

(3.6)

where, although the same variable names are used, it is understood that the so-
lution of (3.6) is different from the solution of the Navier–Stokes equation (1.1).
Leray proved the following theorem:

Theorem 3.1 (Leray [47]). For all u0 ∈ H, f ∈ H, and ε > 0, (3.6) has a unique
C∞ solution. This solution is also bounded in L∞(0, T ;H) ∩ L2(0, T ;V) and one
subsequence converges weakly in L2(0, T ;V) to a weak Navier–Stokes solution as
ε → 0.

The striking result here is that the solution of (3.6) is unique. Hence, moder-
ate filtering of the advection velocity (and if necessary, of the data u0 and f) is
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sufficient to guarantee uniqueness of C∞ solutions; that is, it takes only a small
amount of smoothing to ascertain that the energy cascade stops everywhere in the
domain and for all times.

Rewriting the momentum equation of (3.6) as:

∂tu + u ·∇u + ∇p − ν∇2u = φε∗f − (φε∗u) ·∇u + u ·∇u (3.7)

and introducing the tensor TL such that:

∇· TL = (φε∗u) ·∇u − u ·∇u = ∇· (u ⊗ (φε∗u) − u ⊗ u), (3.8)

it is reasonable to think of the Leray regularization as a LES model. Equation (3.7)
is indeed the same as the momentum equation of (3.1) except for the fact that the
subgrid-scale tensor T is now approximated by TL. However, this interpretation
is debatable, for the model is not frame invariant. We elaborate on this issue in
the following section.

3.4. The Navier–Stokes-alpha model

Owing to the identity

u ·∇u = (∇×u) × u + ∇(u2/2),

the Navier–Stokes problem can be rewritten in the form





∂tu + (∇×u) × u + ∇π − ν∇2u = f ,
∇· u = 0,

u|Γ = 0, or u is periodic,
u|t=0 = u0,

(3.9)

where π = p+ 1
2u

2 is the total pressure. This form of the equations obviously raises
the same uniqueness problem as the original form. This issue can nevertheless be
resolved by resorting to the regularization technique proposed by Leray. Following
the same strategy as in (3.6) and introducing the notation u = φε∗u, we are led
to consider the following regularized problem






∂tu + (∇×u) × u + ∇π − ν∇2u = f ,
∇· u = 0,

u is periodic,
u|t=0 = u0.

(3.10)

Using the identities,

(∇×u) × u = u ·∇u − (∇u)T u,

∇(u · u) = (∇u)T u + (∇u)T u,
(3.11)
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we can recast system (3.10) into the following equivalent form,





∂tu + u ·∇u + (∇u)T · u − ν∇2u + ∇π′ = f ,
∇· u = 0,

u, u are periodic,
u|t=0 = u0,

(3.12)

where π′ = π − u · u.
Upon choosing the Helmholtz filter, introduced in the proof of Proposition 3.1

and defined as
v := (I − ε2∇2)−1v, (3.13)

we recognize the model thoroughly analyzed in Chen et al. [9] and Foias et al. [15,
16]. Regarding the notational choice α = ε, the authors refer to this particular
regularization as the “Navier–Stokes-alpha model”. Once again, regularization
yields uniqueness and the expected regularity properties as stated in the following
theorem:

Theorem 3.2 (Foias, Holm and Titi [15, 16]). Assume f ∈ H, u0 ∈ V. Problem
(3.12) with the Helmholtz filter (3.13) has a unique regular solution u. The solution
u is bounded in L∞(0,+∞;H) ∩ L2(0,+∞;V) and one subsequence converges
weakly in L2

loc(0,+∞;V) to a weak Navier–Stokes solution as ε → 0.

Numerical simulations reported in [15] show that the energy spectrum of the
solution of (3.12) follows the k−5/3 law for k � 1/ε and rolls off to k−3 for k � 1/ε.
Hence, below the scale ε the regularization has replaced the k−5/3 tail of the
spectrum, which is difficult to approximate numerically, by a more gentle k−3 tail.

At this point of the analysis, it seems natural to ask which of u or u is the
most “physically relevant” quantity. Here, by “physically relevant”, we mean that
the quantity is frame-invariant. By a change of frame of reference in (3.12) with
respect to u, it can be shown that u is not physically relevant in this sense (see [28]).
In order to analyze the frame-dependence of the filtered velocity, we first rewrite
(3.12) in terms of u. Introducing the strain rate tensor D = 1

2 (∇u + (∇u)T ), the
vorticity tensor Ω = 1

2 (∇u − (∇u)T ), and the Jaumann derivative [62]

D̊ = ∂tD + u · ∇D + DΩ − ΩD

we show that (3.12) is equivalent to the following system:





∂tu + u ·∇u = ∇· T,

with T = −pI + 2ν(1 − ε2∇2)D + 2ε2D̊,

∇· u = 0,

u is periodic,
u|t=0 = u0

(3.14)
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We recognize here the constitutive law of a rate-dependent incompressible ho-
mogeneous fluid of second grade in which the dissipation is slightly modified by
composition with the Helmholtz operator (see [15] for more details). This set of
equations is frame-invariant; hence, according to our definition, u is the quantity
that is “physically relevant.”

In conclusion, the regularization procedure using the Helmholtz filter (3.13),
as performed in (3.10), is strictly equivalent to LES where the subgrid tensor is
now modeled as follows

T = 2νε2∇2D − 2ε2D̊. (3.15)

The first term amounts to adding some hyper-viscosity (i.e. a bilaplacian) whereas
the second one introduces dispersion effects.

Finally, if in the Leray-regularized equations (3.6) the regularization is per-
formed by using the Helmholtz filter, we observe that the equations can also be
rewritten in terms of the filtered velocity u only. In this case, we obtain a set
of equations for u that are almost frame-invariant but for the term ε2(∇u)T∇2u.
Quite surprisingly, if this O(ε2) term is simply neglected from the momentum
equation, we recover the Navier–Stokes-alpha model (3.12) (see [28]). Hence, the
Navier–Stokes-alpha model can be viewed as a frame-invariant version of the Leray
regularization. The progress made from the ground-breaking work of Leray in 1934
is deceivingly small.

3.5. The local energy equilibrium

Another intriguing problem related to the uniqueness question is that of local
energy balance. Though it is quite simple to show that weak solutions of the
Navier–Stokes equations satisfy a global energy balance (2.3), it has not yet been
possible to prove that a local energy balance holds. In this respect, the following
result is proved in Duchon and Robert [13, 63]:

Proposition 3.2. Let u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) be a weak solution
of the Navier–Stokes equation in the 3D-torus with no source term. Let φε(x) =
(1/ε3)φ(x/ε) be a mollifying sequence (i.e., φ is even, C∞ with compact support in
R

3, non-negative and normalized). Set Dε(u)(x) = 1
4

∫
∇φε(y) ·δu(δu)2 dy, where

δu = u(x + y) − u(x). Then Dε(u) converges in D′(]0, T [×Ω) to a distribution
D(u) that does not depend on φ and such that the following energy balance holds:

∂t( 1
2u

2) + ∇· (u(1
2u

2 + p)) − ν∇2 1
2u

2 + ν(∇u)2 + D(u) = 0.

For each solution u, “D(u) measures a possible dissipation or production of
energy caused by lack of smoothness in the velocity field.” This quantity is zero
only if u is smooth enough. For instance, it is possible to prove that D(u) = 0
if

∫
|u(t,x + y) − u(t,x)|3 dy ≤ c(t)|y|σ(|y|) where

∫ T

0
c(t) dt < +∞ and σ is

continuous in 0 with σ(0) = 0 (see [13]).
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As pointed out by Duchon and Robert [13, 63], it is remarkable that every
solution of the Navier–Stokes equations obtained as a limit of (a subsequence of)
solutions uε of the regularized equations introduced by Leray (3.6) is “dissipative”
in the sense that D(u) ≥ 0; that is, these solutions of the Navier–Stokes equations
satisfy

∂t( 1
2u

2) + ∇· (u(1
2u

2 + p)) − ν∇2 1
2u

2 + ν(∇u)2 ≤ 0. (3.16)

When u is obtained as a limit of a finite dimensional Galerkin approximation, the
sign of D(u) is unknown; that is, the lack of smoothness of Galerkin solutions might
lead to local energy creation. This counter-intuitive result sheds doubt on the
physical relevance of Galerkin solutions, for one would expect lack of smoothness
to always dissipate energy. In other words, assuming we compute an approximate
solution of the Navier–Stokes equations using the Galerkin technique on a finite
element mesh and we make the meshsize go to zero, then we are not guaranteed
that the limit solution satisfy (3.16), whereas if we regularize the advection term
à la Leray, make the meshsize go to zero, and make the regularization parameter
go to zero afterward, then the limit solution necessarily satisfies (3.16).

It is also remarkable that the notion of “dissipative solution” introduced by
Duchon and Robert coincides with the notion of “suitable weak solutions” intro-
duced by Caffarelli et al. [6] (based on the work of Scheffer [67]) for which the
best partial regularity theorem to date has been proved [6].

The arguments developed above can be summarized as follows.

(i) Limit of Galerkin approximations of the LES Navier–Stokes equations using
the Leray regularization or the NS-α model are “dissipative” (or “suitable
weak solutions”) whereas limits of Galerkin approximations may not be so.
The first limit has to be understood in the sense limε→0 limh→0, h being
the discretization parameter, whereas the second one is limh→0.

(ii) Limits of regularized solutions are possibly more regular than limits of
Galerkin approximations.

Hence, limits of LES solutions may be physically more relevant than limits of
Galerkin approximations, thus justifying LES strategies à la Leray.

4. The p-Laplacian models

In this section, LES models based on nonlinear viscosity are analyzed. We review
in particular the Smagorinsky model and unravel similarities with the models
introduced by Ladyženskaja and Kaniel and with the p-Laplacian regularization
techniques. The major conclusions from the analysis presented in this section are
summarized as follows:

(i) This class of models for LES, and in particular the Smagorinsky model, are
justified from a mathematical point of view as they regularize the Navier–
Stokes equations; i.e. they yield a well-posed problem.
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(ii) We also show that the p-Laplacian regularization presents interesting nu-
merical properties that make possible the derivation of L∞-error estimates.

4.1. The Smagorinsky model

Possibly one of the most popular models for Large Eddy Simulations is that pro-
posed by Smagorinsky [69]. The model consists in adding to the stress tensor an
additional nonlinear viscous term that depends on a small length scale ε to be fixed
in some ad hoc way. Denoting the deformation tensor by D = 1

2 (∇u + (∇u)T ),
the additional tensor is written in the form

ε2|D|D (4.1)

Upon introducing the notation T(∇u) = |D|D, the perturbed Navier–Stokes equa-
tions are 





∂tu + u ·∇u + ∇p −∇· (ν∇u + ε2T(∇u)) = f ,
∇· u = 0
u|Γ = 0, or u is periodic,
u|t=0 = u0.

(4.2)

In the literature, another way of presenting the method consists in stating that
(4.2) is the filtered Navier–Stokes equations where the subgrid tensor is modeled
by T = −ε2T(∇u) (see e.g. Lilly [52] or Muschinsky [59]). We think that in-
voking filters here is questionable, or at least debatable, on three accounts. First,
introducing a non-Newtonian effect to model turbulence is perfectly justified phe-
nomenologically without invoking filtering as it has been remarked by Rivlin [61]:
“It has been reported [...] that when a Newtonian fluid flows down a straight pipe
of non-circular cross-section, under conditions for which the fluid has become fully
turbulent, the [mean] flow is no longer rectilinear, but a secondary flow exists in
the cross-sectional planes of a type similar to that [that can be calculated for some
non-Newtonian fluids]. This fact suggests that the turbulent Newtonian liquid
may, for certain purposes, be regarded as a non-Newtonian fluid.” Second, it is
also perfectly justified from a numerical point of view. Since the pioneering work
of von Neumann and Richtmyer [73], it is well known that introducing nonlinear
viscosity helps selecting physically relevant solutions of nonlinear conservation laws
(i.e. entropic solutions) without spoiling too much the accuracy of the numeri-
cal method used. Third, contrary to the Leray regularization and the NS–alpha
model where filtering is at the root of the models, the mathematical analysis of
the well-posedness of the Smagorinsky model (4.2) (see §4.2.) does not make use
of the notion of filter.

We now come to a striking result due to Ladyženskaja [43, 42] that sheds an
original light on Smagorinsky’s model, namely that the model actually yields a
well-posed problem.
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4.2. The Ladyženskaja model

Recalling that the Navier–Stokes equations are based on Newton’s linear hypothe-
sis, Ladyženskaja and Kaniel proposed to modify the incompressible Navier–Stokes
equations to take into account possible large velocity gradients, [43, 42, 37].

Ladyženskaja introduced a nonlinear viscous tensor Tij(∇u), 1 ≤ i, j ≤ 3
satisfying the following conditions:

L1. T is continuous and there exists µ ≥ 1
4 such that

∀ ξ ∈ R
3×3, |T(ξ)| ≤ c(1 + |ξ|2µ)|ξ|. (4.3)

L2. T satisfies the coercivity property:

∀ ξ ∈ R
3×3, T(ξ) : ξ ≥ c|ξ|2(1 + c′|ξ|2µ). (4.4)

L3. T possesses the following monotonicity property: there exists a constant
c > 0 such that for all solenoidal fields ξ, η in W1,2+2µ(Ω) either coin-
ciding on the boundary Γ or being periodic,

∫

Ω

(T(∇ξ) − T (∇η)) : (∇ξ −∇η) ≥ c

∫

Ω

|∇ξ −∇η|2. (4.5)

These conditions are actually satisfied in the case where

T(ξ) = β(|ξ|2)ξ (4.6)

provided the viscosity function β(τ) is a positive monotonically-increasing function
of τ ≥ 0 and for large values of τ the following inequality holds

cτµ ≤ β(τ) ≤ c′τµ,

with µ ≥ 1
4 and c, c′ are some strictly positive constants. Smagorinsky’s model

obviously falls into the admissible category with β(τ) = τ1/2.
Introducing now a (possibly small) positive constant ε > 0, the modified

Navier–Stokes equations take the form





∂tu + u ·∇u + ∇p −∇· (ν∇u + εT(∇u)) = f ,
∇· u = 0
u|Γ = 0, or u is periodic,
u|t=0 = u0.

(4.7)

The striking result from [43, 42] (see [37] for a similar result where monotonicity
is also assumed) is the following theorem

Theorem 4.1. Provided conditions L1, L2, and L3 are satisfied, u0 ∈ H and
f ∈ L2(]0,+∞[;L2(Ω)), then (4.7) has a unique weak solution in

L2+2µ(]0, t[;W1,2+2µ(Ω) ∩ V) ∩ C0([0, t];H) for all t > 0.
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Note that uniqueness in ensured for times t possibly arbitrarily large. This
result states that a small appropriate amount of nonlinear viscosity is actually
sufficient to ascertain that the energy cascade stops, which automatically translates
into uniqueness of solutions for arbitrary times. Moreover, it is possible to prove
the following theorem.

Theorem 4.2. Under the hypotheses of Theorem 4.1, the sequence of solutions to
(4.7) has subsequences that converge weakly in L2(0, T ;V) to weak Navier–Stokes
solutions as ε → 0 and these solutions are dissipative in the sense of Duchon and
Robert (i.e. satisfy (3.16)).

In conclusion, perturbing the Navier–Stokes equations with a term like Smago-
rinsky’s model solves the uniqueness question and ensures that the limit solution
are dissipative, thus giving a strong mathematical support for this type of LES
models.

4.3. On tuning the Smagorinsky constant and numerical issues

When one comes to the question of building a numerical approximation of the
solution to (4.2), one immediately stumbles on the problem of choosing the small
length scale ε in the definition of the Smagorinsky tensor (4.1). To emphasize
that ε is a length scale, let us make henceforth the following change of notation
�LES = ε.

In most of current literature, the authors set �LES = csh where h is the mesh
size of the numerical method used, and the constant cs is tuned so that the model
reproduces the k−5/3 cascade when simulating isotropic turbulence in the 3D-
torus. We refer to Lilly [52, 53] and Germano et al. [22] for landmark papers
proposing tentative evaluations of these parameters. The literature dedicated to
this problem is voluminous and somewhat controversial, and we do not feel quali-
fied to discuss the many physical arguments invoked; however, the mathematical
arguments advanced below suggest that the standard choice �LES/h = cs ≈ 0.18
is debatable.

4.3.1. The mathematical viewpoint

Our first argument is that, generally speaking, amalgamating in some ad hoc way
a mathematical model with a computational one constitutes a serious crime. To
better appreciate this point of view, we refer to the mathematical analysis of
(4.2) (resp. (4.7)). In general, existence of solutions is proven using the Galerkin
technique or one of its variants (see e.g. Lions [54]). In other words, one considers
a sequence of approximations (uh)h>0 (for example, numerical approximations)
defined on a sequence of finite dimensional spaces indexed by h. Then, upon
using a priori estimates uniform in h along with compacity results, one can prove
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that the sequence (uh)h>0 converges to the unique solution of (4.2) (resp. (4.7))
in some appropriate topology. It follows that the solution to (4.2) (resp. (4.7))
should be understood as the limit of numerical approximations uh as h → 0 while
�LES is being held fixed. In other words, if we set cs = �LES/h, we obtain that cs

must grow as h goes to zero, which is clearly in contradiction with the conventional
notion of cs being a constant.

4.3.2. The energy viewpoint

This point of view has actually been defended by Muschinsky [59] who advanced
heuristic arguments that we summarize below. Upon assuming that the subgrid
tensor is given by 2νLESD where νLES = �LES(2D : D)1/2, the dissipation is then
given by

ε = 〈2νLESD : ∇u〉 = �LES23/2〈(D : D)3/2〉 (4.8)

where 〈·〉 is some appropriate average in time and space. Now, the conventional
wisdom consists is assuming the turbulence in the flow to be homogeneous and
isotropic so that

〈D : D〉 =
∫ +∞

0

E(k)k2dk, (4.9)

where E(k) is the distribution of kinetic energy. If there was no dissipation (i.e.,
ν = νLES = 0), the Kolmogorov cascade would prevail at every scale in the flow
and one would have E(k) = CKε2/3k−5/3 (henceforth we use the value CK = 1.5
which is reasonably representative of experimental data). But, in the case of
numerical simulations on finite grids with a viscous term à la Smagorinsky, it is
unreasonable to assume that these dissipative effects are not felt by the kinetic
energy distribution. Hence, Muschinsky proposes to consider

E(k) = CLESε2/3k−5/3f(k�LES, �LES/h), (4.10)

where f is some ad hoc, hopefully universal, dissipation function and CLES should
be as close as possible to the Kolmogorov constant CK . Upon inserting (4.10) into
(4.9) and using the result in (4.8), one obtains

CLES =
1

2
∫ +∞
0

x1/3f(x, �LES/h)dx
. (4.11)

In this framework, the first attempt by Lilly [52] to compute the Smagorinsky
constant consists in assuming that the dissipation function does not depend on
the ratio �LES/h and can be approximated as follows

fL(x) =

{
1 if k ≤ π/h

0 if k > π/h.

Muschinsky argues that this type of function is not realistic since it consists in
assuming that above scale π/h no dissipation is felt, whereas below this scale all
motions are frozen. As an alternative to this crude point of view, the author
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proposes to consider the following semi-empirical dissipation function introduced
by Heisenberg [29]

fH(x) =

[

1 +
(

3CK

2

)3

x4

]−4/3

and to replace the +∞ bound in (4.11) by π�LES/h. The graphs of fL and fH are
shown in Figure 1.
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Fig. 1. Models for the dimensionless dissipation spectrum for locally homogeneous and
isotropic turbulence generated by a Smagorinsky-type LES. Left: graph of the dissipation

functions fL and fH according to the models by Lilly [52] and Heisenberg [29], respectively.
Right: graph of CLES vs. cs using the dissipation functions fL and fH .

Using either fL or fH in (4.11), and introducing the notation cs = �LES/h, one
immediately obtains

CLES,L =
2
3
(πcs)−4/3 (4.12)

CLES,H = CK

[

1 +
(

2
3CK

)3

(πcs)4
]1/3

, (4.13)

where cs is still a free parameter. The plots of CLES,L and CLES,H versus cs are
shown in Figure 1. Now the traditional wisdom consists in choosing cs such that
CLES is as close as possible to the Kolmogorov constant CK = 1.5. It is clear
that by adopting the viewpoint of Lilly [52], there is only one possible choice,
cs = (2/3CK)3/4/π ≈ 0.18. Henceforth let us denote c0 = (2/3CK)3/4/π. For
CLES,H to be close to CK , the correct “mathematical” choice is cs = +∞, and
for practical purposes 2 × c0 ≈ 0.36 � cs seems adequate. Of course, in practice,
admissible values of cs are bounded from above by the constraint �LES = csh �
L. Moreover, Muschinsky argues that cs must be small enough in order for the
turbulent Reynolds number Ret

= (L/csh)4/3 to be large enough, so that an
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inertial cascade is sustained. As a result a value of cs twice as large as (or possibly
larger than) the traditional value proposed by Lilly is recommended.

4.3.3. Computational evidence

We finish this section by noting that this viewpoint seems to have been gaining
momentum within the last few years. In particular, numerical simulations of forced
and freely decaying turbulence in the 3D-torus by Magnient et al. [56] confirm
energy distributions like (4.10) where f(x) is close to the Heisenberg dissipation
function. Moreover, the authors show that by choosing �LES,H = c0h, with c0 =
0.18, the energy distribution depends widely on the numerical method used to solve
the equations (the authors have tested second-order, fourth-order and sixth-order
compact finite differences schemes) and in these circumstances obtaining a k−5/3

spectrum is a matter of selecting the “right” numerical scheme (not necessarily
the most accurate one). Their numerical experiments [56, Fig. 11] clearly show
that by using �LES ≥ c04h, the energy spectrum is almost independent of the
numerical scheme, a property that is generally looked for in numerical analysis.
Similar conclusions have been drawn by Ghosal [23]. By referring to �LES as the
LES filter-width and to c0h as the characteristic size of the computational grid,
the author writes: “In order that the smallest resolved scales be representable on
the grid, it is required that c0h ≤ �LES [. . . ] As a matter of fact, this distinction
between c0h and �LES is often ignored [. . . ] However, if one expects to adequately
resolve all scales up to �LES it is natural to require that c0h be several times smaller
than �LES. Thus, we are led to consider an LES with a filter-width �LES performed
on a numerical grid of spacing c0h < �LES.” The author finally recommends to
take at least c02h ≤ �LES. A ratio 2 or 4 may not seem to be significant until one
recalls that cs comes into play in (4.2) by its square. If one choses cs/c0 = 3, then
it is clear that c2

s is larger than c2
0 by one order of magnitude, i.e. c2

s 
 c2
0.

Finally, although Smagorinsky’s turbulence model is acclaimed for its remark-
able ability to reproduce the k−5/3 energy spectrum, the theoretical results of
§4.2. show that this model is nothing but a regularization technique among many
others; in fact, the various models proposed by Ladyženskaja [43, 42] and Kaniel
[37] should achieve similar results.

4.4. The p-Laplacian

The p-Laplacian operator is a simple version of both Smagorinsky’s and Lady-
ženskaja’s models. This operator is well-known to mathematicians for being a
prototype for monotone operators, see e.g. Lions [54] or Showalter [68]. We show in
this section how this operator can be used for approximating advection dominated
advection-diffusion equations, hence giving a second mathematical interpretation
of Smagorinsky’s model.
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Assuming Ω ⊂ R
d and p ≥ 2, the p-Laplacian is the operator defined as follows:

Tp : W 1,p
0 (Ω) � u �−→ Tp(u) = −∇· (|∇u|p−2∇u) ∈ W 1,p

0 (Ω)′.

It is clearly bounded in W 1,p
0 (Ω) and satisfies the following monotonicity property

∃α > 0,∀ u, v ∈ W 1,p
0 (Ω), 〈Tp(u) − Tp(v), u − v〉 ≥ α‖∇(u − v)‖p

1,p,

where 〈·, ·〉 denotes the duality pairing (the reader not familiar with this notion
can view it as the L2-scalar product). Note that when p = 2, Tp is nothing else
but the Laplacian. We also observe that Smagorinsky’s model corresponds to the
p-Laplacian with p = 3.

This operator has interesting properties owing to the following standard Sobolev
embedding: there exists c > 0 such that for all u ∈ W 1,p(Ω)

‖u‖Lq(Ω) ≤ c‖u‖W 1,p(Ω)






1
q = 1

p − 1
d if 1 ≤ p < d

p ≤ q < ∞ if p = d

q = +∞ if p > d

(4.14)

where d is the space dimension (see e.g. [4, 68]). Hence the monotonicity property
yields a priori estimates in the norm of W 1,p(Ω), which not only controls the
standard H1(Ω)-norm, but also controls the norm of Lq(Ω). For instance, for
p > 3 this term allows for a control in the L∞(Ω) norm in three dimensions.

To illustrate these ideas, we consider an advection diffusion equation dominated
by advection: {

−ε∇2u + β ·∇u = f,

u|Γ = 0,
(4.15)

where ε > 0. For the sake of simplicity, we assume that β is a smooth solenoidal
vector field with zero normal trace on Γ, i.e. β ∈ H, and ε is some positive real
number. It is well-known that approximating this type of equation is a nontrivial
task when the ratio h‖β‖0,∞/ε is large, h being the typical meshsize. Standard
Galerkin (i.e. centered) approximation yields spurious node-to-node oscillations,
the heuristic reason for this being that the grid is not fine enough for the viscous
effects to dampen gradients. This problem is to be put in parallel with the diffi-
culties in approximating fluid flows at high Reynolds numbers. In the same spirit
as that of the Smagorinsky model, one may try to slightly modify the problem by
adding some nonlinear viscosity.

Let Xh ⊂ H1
0 (Ω) be a finite dimensional space having standard interpolation

properties (for instance a continuous Pk finite element space), i.e. there are c > 0
and k > 0 such that for all v ∈ W 1,p(Ω)

inf
vh∈Xh

(
‖v − vh‖0,p + h‖v − vh‖1,p

)
≤ chk+1‖v‖k+1,p. (4.16)

Let us set
a(u, v) = (∇u,∇v), b(u, v) = (β ·∇u, v), (4.17)
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where (·, ·) denotes the scalar product in L2(Ω). We consider the following ap-
proximate problem

{
Find uh in Xh s.t.
εa(uh, vh) + b(uh, vh) + hσ(Tp(uh), vh) = (f, vh), ∀ vh ∈ Xh,

(4.18)

where σ and p ≥ 2 are yet to be determined. It is clear that we perturb the
original problem by a term which is O(hσ). Hence, to preserve optimal convergence
estimates on gradients one should choose σ such that σ ≥ k.

Theorem 4.3. Under above hypotheses and provided u is smooth enough, we have
the following error estimate

‖u − uh‖1,p ≤ (h
1

p−1 + h
k+1−σ

p−1 )c(u),

where c(u) = cmax(‖u‖1,p, h
k‖u‖k+1,p, ‖u‖

1
p−1
k+1,p′).

The interesting aspect of such an estimate is that it is uniform with respect to
ε, though ε is implicitly accounted for in c(u). Note also that it is necessary to
impose k + 1 > σ in order to achieve convergence. As a result, consistency and
W 1,p-convergence are guaranteed if

k ≤ σ < k + 1.

Of course, for the case σ = 1 and p = 2, which corresponds to the crude first order
linear viscosity, we obtain ‖u − uh‖1,2 ≤ ch. But a more interesting situation
arises if p > d, because convergence in the L∞-norm is then guaranteed due to
the Sobolev inequality (4.14). In this case, convergence occurs without unbounded
spurious oscillations. Note finally that in three dimensions and for a second order
method, i.e. k = 1, the limit case to obtain L∞-convergence is p = 3 and σ =
k+1 = 2. That is, the limit case is formally equivalent to the Smagorinsky model.

5. Spectral viscosity methods

In this section we review the so-called spectral eddy-viscosity methods. These
LES techniques, initially introduced by Kraichnan [41], are frequently used in
conjunction with spectral approximation methods. A voluminous literature has
been dedicated to these methods and the approach on which they are based relies
on sophisticated physical arguments that we do not assess. Our primary goal here
is to identify mathematical arguments that can justify these techniques.

This section is organized as follows. We first recall the approach proposed by
Kraichnan [41]. We then suggest a striking similarity between this approach and
the method developed by Tadmor [72] for solving nonlinear scalar conservation
equations. We proceed by comparing these two methods and by underlining some
of their differences. Since the two methods are very similar in the way they are
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numerically implemented, we also inquire whether the theory of the spectral vis-
cosity method can be viewed as a mathematical justification for the eddy-viscosity
method.

The main conclusions of this section are as follows:

(i) These methods are essentially numerical, and are linear or quasi-linear
regularizations.

(ii) Eddy-viscosity methods do not achieve spectral accuracy, contrary to spec-
tral viscosity methods.

(iii) The addition of a linear viscosity to nonlinear scalar conservation laws
guarantees convergence of the approximate solution to the unique entropy
solution. Unfortunately, applying this concept to the Navier–Stokes equa-
tions does not solve the uniqueness question. Hence, contrary to the fil-
tering techniques and the nonlinear viscosity regularizations, this class of
methods, in their original forms, do not regularize the Navier–Stokes equa-
tions.

(iv) We finally propose a minor, seemingly new, modification of the eddy-
viscosity that solves the uniqueness question.

5.1. Kraichnan’s eddy-viscosity

A Fourier approximation of the Navier–Stokes equations in the 3D-torus is built as
follows. Given a cut-off wavenumber, kc > 1, we denote by Pkc

the L2-projection
onto H of vector-valued kc-trigonometric polynomials:

Pkc
(v) = v̂0 +

∑

k∈Z3
|k|∞≤kc,k�=0

(

I − kkT

|k|2
)

v̂keik·x.

Note that the operator Pkc
commutes with derivatives. The approximate solution

ukc
(x, t) =

∑
|k|∞≤kc

ûkeik·x, satisfies
{

∂tukc
− νPkc

∇2ukc
+ Pkc

(ukc
·∇ukc

) = Pkc
f ,

ukc
|t=0 = Pkc

u0.
(5.1)

Of course, if kc is not large enough, i.e. if the Kolmogorov scale λ ∼ LR
−3/4
e

is much smaller than the grid size 2πk−1
c , then energy accumulates at the cut-off

scale. This translates in practice into spurious node-to-node oscillations in the
approximate solution. The main purpose of LES is to avoid this phenomenon by
adding extra terms to the Navier–Stokes equations so that the energy dissipates
through the Kolmogorov cascade at the right rate. Assuming that the cut-off is
large enough so that kc is in the inertial range of the cascade, then Kraichnan [41]
drew upon ad hoc statistical hypotheses that an eddy-viscosity should be added
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to (5.1) and he proposed to modify the approximation scheme as follows:
{

∂tukc
− Pkc

∇2(νukc
+ νt(kc)Qkc

∗ukc
) + Pkc

(ukc
·∇ukc

) = Pkc
f ,

ukc
|t=0 = Pkc

u0,
(5.2)

with the vanishing viscosity νt(kc) being such that

νt(kc) = E(kc)1/2k−1/2
c , (5.3)

where E(kc) = L
2π

1
2

∑
|k|∞=kc

|ûk|2 is the kinetic energy at the cut-off scale1, and
the viscosity kernel assumes the form

Qkc
(x) =

∑

|k|∞≤kc

ν̂t(|k|∞)eik·x, (5.4)

where ν̂t is a non-dimensional function which is constant for |k|∞/kc � 0.3, but
increases for higher values of the ratio |k|∞/kc so that the graph of ν̂t makes an
upward cusp in the vicinity of kc (see Figure 2). Note that the convolution is easily
evaluated as follows:

∇2(Qkc
∗ ukc

) = −
∑

|k|∞≤kc

ν̂t(|k|∞)|k|2ûkeik·x. (5.5)

It is important to note at this point that the eddy-viscosity model is linear but for
a weak nonlinear dependency of νt(kc) on ukc

through E(kc) (see (5.3)).
Many authors have elaborated on this theory, among which are Chollet and

Lesieur [10], who proposed exponential forms of the cusp and power laws like

ν̂t(|k|∞) =
[
φ0 + φ1 |k|n∞ k−n

c

]
, (5.6)

where φ0, φ1 and n are ad hoc constants to be determined (see also Lesieur and
Métais [58, 49]). The reader is also referred to [14, 65] for reviews of these models.

In order to cast a new light upon this type of models, we now recall the spectral
viscosity technique of Tadmor [72] for approximating nonlinear conservation laws.
We shall return to Kraichnan’s eddy-viscosity model in Section 5.3..

5.2. Tadmor’s spectral viscosity

The concept of spectral viscosity introduced by Tadmor [72] is a very powerful tool
originally designed to prove convergence of spectral approximations of nonlinear
conservation laws.

Let us consider a scalar conservation law in the d-dimensional torus Ω =
(0, 2π)d augmented with the entropy condition,






u|t=0 = u0 ∈ L∞(Ω),

∂tu + ∇· f(u) = 0, in the distributional sense,

∂tU(u) + ∇· F(u) ≤ 0, ∀ U convex, F(u) =
∫ u

0
U ′(w)f ′(w)dw,

(5.7)

1 Although in the 3D torus L = 2π, we keep the ratio L/2π to keep track of dimensions.
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where f is a flux a class Cs, s being sufficiently large.
In order to build a spectral approximation of (5.7), we introduce kc > 1 and

we denote by Pkc
the L2-projection onto kc-trigonometric polynomials. The stan-

dard Galerkin technique consists in projecting (5.7) onto these kc-trigonometric
polynomials. The resulting scheme is spectrally accurate, but Gibbs oscillations
triggered by shocks prevent the approximate solution to converge in L1(Ω) to the
entropy solution; that is, to the solution that satisfies the entropy conditions in
(5.7). To suppress these oscillations while retaining spectral accuracy, Tadmor [72]
proposed to augment the Fourier approximation by a spectral viscosity as follows.
We look for ukc

(x, t) =
∑

|k|∞≤kc
ûkeik·x, so that






∂tukc
+ ∇· (Pkc

f(ukc
(x, t)) = εkc

∇2(Qkc
∗ukc

(x, t)),

ukc
|t=0 = Pkc

u0.
(5.8)

where the vanishing viscosity εkc
and the viscosity kernel Qkc

satisfies the following
conditions:

T1. There is some 0 < θ < 1, such that the coefficient εkc
satisfies

εkc
∼ kc

−θ, and εs
kc
‖∂s

xPkc
u0‖L2(Ω) ≤ const, ∀ s ≥ 0. (5.9)

T2. There exists a real number ki 
 1

ki ∼
kc

θ
2

(log kc)
d
2
, (5.10)

such that in the range 0 ≤ |k|∞ ≤ ki there is no artificial viscosity.
T3. The viscosity kernel is given by its Fourier expansion Qkc

(x, t) =
∑kc

|k|∞=ki
Q̂k(t)eik·x, and the coefficients are spherically symmetric, that

is, Q̂k = Q̂p for all |k|∞ = p. Furthermore, the coefficients are monoton-
ically increasing with respect to p and satisfy the estimate

|Q̂p − 1| ≤ c
k2

i

p2
, ∀ p ≥ ki. (5.11)

Note that viscosity coefficients like

Q̂|k|∞ = 1 − ki
2

max(ki, |k|∞)2
, (5.12)

are acceptable, though it is probably better to have C∞ smoothness with respect
to k in applications (see [55, p. 336] and §5.3.). Note also that in applications one
should use θ = 1−, for this yields best accuracy, though the limit case θ = 1 is
theoretically excluded. We also remark that the artificial viscosity term is easy to
implement in the Fourier space since

∇2(Qkc
∗ ukc

) = −
kc∑

|k|∞=ki

Q̂|k|∞ |k|2ûkeik·x, (5.13)
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and that this operator is linear.
The major result proved in [72] for the 1D case and in [8] for the d-dimensional

case is as follows.

Theorem 5.1. Under above assumptions, ukc
converges to the unique entropy

solution of (5.7) and the following error estimate holds:

‖u − ukc
‖L∞([0,T ];L1(Ω)) ≤ c

√
εkc

. (5.14)

The fact that Tadmor’s approach maintains spectral accuracy for nonlinear con-
servation laws and is able to select entropy solutions has prompted some authors
to use the spectral viscosity operator to perform LES. For preliminary attempts
in this direction we refer to Karamanos and Karniadakis [38], Pasquetti and Xu
[60], and Adams and Stolz [1]. The goal of the next section is to compare Kraich-
nan’s eddy-viscosity and the spectral viscosity regularization. We want to assess
their respective accuracy and to determine whether these techniques regularize the
Navier–Stokes equations.

5.3. Eddy-viscosity versus spectral viscosity

When comparing (5.2) and (5.8) we observe some similarity in the two approaches.
In particular, the way the artificial viscosity operator is implemented in (5.5) and
(5.13) is identical in both cases. The major difference lies in the scaling of the
viscosities (5.3) and (5.9), and in the definition of the non-dimensional viscosity
laws (5.6) and (5.12).

5.3.1. Graphic representation of Q̂|k|∞ and ν̂t(|k|∞)

In order to get a better insight of the differences between the spectral viscosity
and the eddy-viscosity, let us compare the graphs of two possible definitions of
Q̂|k|∞ and ν̂t(|k|∞).

For the purpose of comparison we consider the following definition for Tadmor’s
spectral viscosity

Q̂|k|∞ = 1
2 (tanh(λx) + 1)

[

1 − 1
f(x)2

]

(5.15)

where x = |k|∞−ki

ki
, f(x) = 1

2 (
√

ε + x2+x)+1, ε = 0.01 and λ = 1
2 log(ε/2εm) with

εm denoting the machine accuracy. Note that this definition is slightly different
from what is required in assumption T2 in the sense that if |k|∞ < ki then Q̂|k|∞
is not zero, but this definition implies that Q̂|k|∞ goes exponentially fast to zero
when |k|∞ is significantly smaller that ki. This type of behavior is meant for
Q̂|k|∞ to be a smooth function of |k|∞ on the entire range 0 ≤ |k|∞ ≤ kc while
being exponentially negligible for |k|∞ < ki. We show in Figure 2 the graph of



228 J.-L. Guermond, J. T. Oden and S. Prudhomme JMFM

Q̂|k|∞/Q̂kc
as a function of k/kc for various cutoff numbers kc using εm = 10−16,

θ = 1, and ki = 5
√

kc.
For the eddy-viscosity ν̂t(|k|∞), we choose one of the expressions proposed by

Chollet and Lesieur [10] (see also [44, 49, 50]):

ν̂t(|k|∞) = (2.1)−3/2
[
0.441 + 15.2 exp(−3.03 kc/|k|∞)

]
. (5.16)

The graphs of the normalized functions Q̂|k|∞/Q̂kc
and ν̂t(|k|∞)/ν̂t(kc) are

represented in Figure 2 as functions of k/kc for kc = 64 and kc = 128.
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Fig. 2. Spectral viscosity versus Kraichnan–Chollet–Lesieur’s model. Left: kc = 64. Right:
kc = 128.

5.3.2. Spectral accuracy

The spectral viscosity Q̂|k|∞ converges exponentially to zero for |k|∞ ≤ ki, and
we recall that this feature is meant for the spectral viscosity method to achieve
spectral accuracy [8, 55, 72].

Contrary to the spectral viscosity, Q̂|k|∞ , the graph of the eddy-viscosity,
ν̂t(|k|∞), does not vanish in the low mode region. This feature de facto destroys
spectral accuracy of the numerical method. To better appreciate this argument,
let us come back to definition (5.3). Assuming that the cut-off is realized in the
inertial range of the Kolmogorov cascade, then E(kc) ∼ k

−5/3
c . If φ0 in (5.6) is not

zero, then (5.3) implies that νt(kc)ν̂t(k) can be bounded from below by cφ0k
−4/3
c

and from above by c(φ0 + φ1)k
−4/3
c . Hence, except for the weakly nonlinear de-

pendency of ν̂t(|k|∞) on ukc
through E(kc), we infer that, in first approximation,

Kraichnan–Chollet–Lesieur’s eddy-viscosity model is a standard (almost constant
and almost linear) artificial viscosity scaling like k

−4/3
c . This result, which does

not seem to be stressed in the literature, is odd. Formally, it should limit the
convergence of the method to O(k−4/3

c ), which is by far not spectral.
Let us now recall an interesting result from [8].

Lemma 5.1. Under hypotheses T1, T2, T3, there exists a constant c independent
of kc s.t.

∀ p ≥ 1, sup
vkc �=0

εkc

‖∇2(Qkc
∗vkc

) −∇2vkc
‖0,p

‖vkc
‖0,p

≤ c.
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This lemma states that the spectral viscosity is an Lp-bounded perturbation
of the standard first-order linear viscosity (the lemma remaining true for θ = 1
as well). Since, as shown above, the eddy-viscosity is an almost constant first-
order linear viscosity, this result means that the spectral viscosity acts in a similar
manner on the high wavenumber modes as the eddy-viscosity, the only difference
being that it does not spoil the consistency error by unnecessarily dampening the
low wavenumber modes. In other words, this argument proves that, modulo the
scaling factor discussed above, the spectral viscosity really works like the eddy-
viscosity while retaining spectral accuracy.

In the literature, the fact that ν̂t(|k|∞) is not zero when k → 0 is meant to
account for long range interactions between very small scales and large scales (i.e.
the so-called nonlocal triadic interactions). Although we do not feel qualified to
assess the relevance of this argument, we observe that it seems to be definitely
incompatible with spectral accuracy, thus questioning the use of spectral methods
in this context.

5.3.3. The DNS point of view

It is reasonable to think that Direct Numerical Simulations may bring some clue
on the validity of laws like (5.6) and (5.16).

Let us assume that DNS data are at hand. Let us denote by k∞ the cutoff
for this DNS. Upon denoting uk,k′ =

∑k′

|�|∞=k û(�, t)ei�·x, the usual procedure to
evaluate a, possibly time-dependent, eddy-viscosity νt(k, t) is as follows

νt(k, t) =

∫
Ω
(uk∞ ·∇uk∞ − ukc

·∇ukc
) · uk,kdx

2k2E(k, t)
, (5.17)

where E(k, t) is the (possibly time-dependent) kinetic energy at the wavenumber
k. This function is such that

[
∂t + 2k2(χ(k)ν + νt(k, t))

]
E(k, t) =

∫

Ω

(f − ukc
·∇ukc

) · uk,kdx,

where χ(k) = 1
2

∑
|�|∞=k |�|2|û(�, t)|2/k2E(k, t) is almost constant if the flow is

isotropic.
Of course, assuming that νt(k, t) (or some time average of it) is the one that

models reasonably the missing nonlinear terms in the momentum equation is an
act of faith. Actually, as reported in [57], “In general, however, we can state quite
categorically that, for the case of a sharp cutoff in wavenumber space, no eddy-
viscosity model (subject to the reasonable constraint νt(k, t) ≥ 0) can perfectly
reproduce the missing nonlinear terms.”

Nevertheless, we show in Figure 3 the ratio 〈νt(k, t)〉/ν for a stationary flow
in the 3D-torus, where 〈·〉 is the time average. The DNS simulations have been
performed by McComb and Young and are reported in [57, Fig. 15]. The DNS uses
1283 modes. In Figure 3, the authors have plotted the ratio νt(k)/ν as a function
of k/kc for various cutoff wavenumbers kc � 128.
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Fig. 3. Spectral viscosity from McComb and Young [57, Fig. 15], νt/ν vs. k/kc for various
cutoffs kc = 16, 32, 48, 64, 80, 96, 112 (Courtesy of D. McComb).

These results seem both to confirm (see kc = 16) and to contradict (see 32 ≤
kc ≤ 112) laws like (5.6) and (5.16). The case kc = 16 is in perfect agreement with
(5.6), but this cutoff is so low that it is hard to believe that any significant part of
the spectrum is really resolved. This curve clearly shows that all the scales of the
spectrum interact with each other. This is in perfect agreement with the fact that
laws like (5.6) and (5.16) are meant to reproduce nonlocal energy transfers at all
scales. We conclude from this observation that laws like (5.6) or (5.16) are well
suited to situations where no significant part of the energy spectrum is resolved, i.e
under-resolved LES. For the numerical point of view, under-resolved LES with an
eddy-viscosity like (5.16) can be done with any second-order numerical technique,
since upon setting kc = 1/h and assuming E(kc) ∼ k

−5/3
c , one obtains an eddy-

viscosity of order h4/3 which is clearly significantly larger than the h2 consistency
error of the scheme. In conclusion, it seems to us that the use of spectral methods
to perform under-resolved LES may be unnecessary since spectral accuracy cannot
be achieved.

If one really wants to use spectral methods to do LES and if one really expects
to achieve spectral accuracy, then the cutoff wavenumber should be chosen large
enough for the large scales to be resolved. Whether such an expectation is physi-
cally realistic we shall let the turbulence specialists decide. Nevertheless, returning
to Figure 3, it seems reasonable to expect that for kc ≥ 32 the lower part of the
spectrum of the velocity field is somewhat resolved. The figure suggest that in
the low mode region the computed eddy-viscosity goes to zero extremely fast as
kc grows. The convergence rate to zero seems to be much faster than k

−4/3
c which

is the rate produced by the law (5.6). Hence, eddy-viscosity models like (5.6) do
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not seem to be compatible with LES for which the lower part of the spectrum
is resolved. Note also that Figure 3 corroborates the spectral viscosity postulate
that the artificial viscosity should be zero in the low mode.

Finally concerning the cusp form of the curves in Figure 3, some agreement
among turbulence specialists seems to emerge in the literature to state that it may
be an artifact that comes from the particular definition (5.17) that is assumed
for νt(k). We refer to Quarini and Leslie [51] for a thorough discussion of this
phenomenon. To conclude on this matter, we repeat that the definition (5.17) is
an act of faith, since it cannot be proved that eddy-viscosity models can perfectly
represent the contribution of the nonlinear terms that are not accounted for in
numerical simulations.

5.3.4. The well-posedness issue

One may finally wonder whether a spectral viscosity perturbation of the Navier–
Stokes equation could solve the uniqueness issue in the same way as the Leray
regularization and Ladyženskaja’s nonlinear viscosity did. In other words, does a
spectral viscosity perturbation regularize the Navier–Stokes equations?

To answer this question, let us extend the operator Qkc
to L1(Ω) by defining

Q̃kc
= Qkc

+
∑

|k|∞>kc
eik·x. Formally, Q̃kc

= δ +
∑

|k|∞≤kc
(ν̂t(|k|∞) − 1)eik·x,

where δ is the Dirac measure. Let P∞ be the L2-projection onto H, and let us
modify the Navier–Stokes equations as follows






∂tuε − P∞∇2
(
νuε + εQ̃kc

∗uε

)
+ P∞(uε ·∇uε) = P∞f ,

uε|t=0 = u0,
(5.18)

where ε is some vanishing viscosity. Then, it is clear that

∀ v ∈ (1 − Pkc
)H1

0(Ω), ∇2
[
νv + εQ̃kc

∗v
]

= (ν + ε)∇2v.

That is, except for the finite-dimensional vector space of the kc-trigonometric
solenoidal polynomials, adding a spectral viscosity just amounts to replacing the
viscosity ν by ν+ε, which is clearly not enough for solving the uniqueness question
(at the present time). Hence, modifying the Navier–Stokes equations by adding a
linear spectral viscosity does not resolve the uniqueness problem.

Note that we cannot blindly extend directly to the eddy-viscosity the nega-
tive conclusion we have drawn for the linear spectral viscosity, for eddy-viscosity
models are slightly nonlinear through their dependency on E(kc). However, owing
to the evident uniform boundedness of ‖u(t)‖2

0, it is clear that E(kc) is bounded
uniformly in time, which implies that νt(kc) is also uniformly bounded in time.
Now let us consider the Navier–Stokes equations modified by adding a spectral
eddy-viscosity that has been extended beyond kc to all the Fourier modes in Z

3 as
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above. In view of what was proved earlier, adding a spectral eddy-viscosity to the
Navier–Stokes equation is equivalent to adding a time-dependent constant to the
Reynolds number for all the modes beyond kc. Even though the variations in the
Reynolds number may be time-dependent, their amplitude is bounded uniformly in
time. Hence, from what we know from the Navier–Stokes equation, it is doubtful
that eddy-viscosity model can solve the uniqueness question. It is sometimes
claimed in literature that Kraichnan–Chollet–Lesieur’s viscosity is “equal to” the
Smagorinsky model (see e.g. Lesieur [48, p. 237]). In view of the radically different
behavior of both techniques concerning the uniqueness issue, we found this claim
dubious.

At this point we realize that one must temper the hope that one might have
to give some mathematical justification to eddy-viscosity methods by invoking the
fact that spectral viscosities select entropy solutions of nonlinear scalar conserva-
tion laws. Although the Navier–Stokes equations and nonlinear scalar conservation
laws share some important features, these two sets of PDE’s are quite different.
The difference is rooted in the fact that adding a linear first-order viscosity to non-
linear scalar conservation laws is just what it takes to select the entropy solution,
whereas decreasing the Reynolds number in the Navier–Stokes equations does not
resolve the well-posedness problem.

5.3.5. Proposition for a nonlinear spectral viscosity

From the previous section it is clear that eddy-viscosity and spectral viscosity
techniques do not regularize the Navier–Stokes equations. The reason is that these
operators are linear or quasi-linear and of second-order only. We now propose a
spectral hyper-viscosity that should resolve this problem.

Let us set ki = kθ
c and let us define Q̂k as in (5.15), (5.12), or (5.13). Now,

having in mind the iterated Laplacian operator, we define

ν̂t(k,u) = Q̂|k|∞ |k|α,
5
4

< α, (5.19)

and

νt(kc) = k−2θα
c , 0 < θ < 1 − 5

4α
. (5.20)

Then the nonlinear viscosity kernel assumes the following form

Qkc
(x,u) =

∑

|k|∞≤kc

ν̂t(k,u)eik·x. (5.21)

Although a thorough mathematical analysis of this model is out of question here,
the reader may convince himself that this kernel yields spectral accuracy, and,
since it yields an a priori estimate in L2(0, T ;Hα(Ω)), that it actually provides
for a regularization of the Navier–Stokes equations.
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6. Two-scale methods

Hierarchical multilevel settings are very often credited for providing suitable frame-
works for LES. We review this point of view in the present section, which is or-
ganized as follows: first, we describe popular two-scale subgrid viscosity models;
then, we review scale similarity models; finally, we show that numerical imple-
mentations of some two-scale models are very similar to a subgrid stabilization
technique that has been introduced in the literature to solve non-coercive PDE’s,
[25, 27, 26].

This investigation led us to draw the following conclusions:

(i) Standard scale-similarity models do not yield coherent energy estimates.

(ii) A new scale-similarity model introduced in [45] yields coherent energy es-
timates, but a discrete version of the model cannot realistically satisfy all
assumptions, namely the discrete incompressibility, the commutation of the
filter with differential operators, and the self-adjointness of the filter.

(iii) A new scale-similarity model that solves the problems raised in (ii) can be
derived.

(iv) There seem to be no mathematical results, to our best knowledge, that
would show that two-scale models are regularization techniques.

(v) The only mathematical result in support of this class of methods that
we have been able to identify so far is that, when approximating linear
noncoercive PDE’s, the addition of a two-scale subgrid viscosity guarantees
optimal convergence in the graph norm of the approximate solution.

Throughout this section, we assume that we have at hand two finite dimensional
spaces, Xh and Mh, for approximating the velocity and the pressure, respectively.
To avoid irrelevant stability issues, we assume that Xh and Mh satisfy the LBB
condition. We assume also that we are given a linear operator PH : Xh −→ Xh

that we shall refer to as a filter. We call Xh the fine scale space and XH = PH(Xh)
the resolved scale space. Here H and h refer to the characteristic meshsizes of XH

and Xh, respectively. It is common in the literature to take H ≈ 2h. We finally
suppose that XH satisfies interpolation properties of O(Hk+1) in L2(Ω) and of
O(Hk) in H1(Ω).

6.1. Two-scale subgrid viscosity methods

The robustness of artificial viscosity techniques has led authors to adapt this
class of methods to the two-scale approximation framework. For two-scale sub-
grid viscosity methods, the main motivation is to construct a semilinear form
asgs(uh;uh,vh) accounting for the modeling of a subgrid tensor and to solve the
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following approximate Navier–Stokes equations:





Find uh ∈ C1(0, T ;Xh) and ph ∈ C0(0, T ;Mh) such that

(dtuh,vh) + (uh ·∇uh,vh) − (ph,∇· vh) + ν(∇uh,∇vh)
+ asgs(uh;uh,vh) = (f ,vh), ∀vh ∈ Xh

(qh,∇· uh) = 0, ∀qh ∈ Mh

uh|t=0 = Ihu0,

(6.1)

where Ih is an L2-stable interpolation operator in Xh.

6.1.1. The subgrid viscosity method

The strategy for these techniques consists in modeling the subgrid tensor in the
form of a dissipative operator like ∇· T = ∇· (−νt∇u) where the so-called turbu-
lent viscosity, νt, is assumed to depend only on the fluctuating component of the
velocity.

Adopting, formally for the time being, a decomposition of the velocity field in
the form u = u + u′, one possibility for defining νt consists in assuming that the
turbulent viscosity depends only on the turbulent kinetic energy e′ = 1

2u
′2 and a

turbulence mixing length scale ε s.t. νt ∼ εe′1/2. Numerically, this idea can be
implemented using two-scale approximation techniques by identifying u with uh

and u with PH(uh); then, the discrete turbulent kinetic energy is 1
2 (uh−PH(uh))2

and the turbulence length scale at hand is the coarse meshsize H. Hence, the
turbulent kinetic energy model, usually referred to as the TKE model (see e.g.
[74]), consists in setting

νt ≈ cH|uh − PH(uh)|. (6.2)

Another possibility for defining νt consists in using a mixed approach combining
the Smagorinsky model and the TKE eddy-viscosity introduced above as in Sagaut
et al. [66]:

νt(uh) = cH1+α|PH(uh) − uh|1−α






|D(uh)|α

or
|∇×uh|α

0 ≤ α ≤ 1. (6.3)

We refer to Sagaut [65] for a thorough review on this class of models. One major
pragmatic interest in this kind of formula is that it combines the stabilizing effects
of the Smagorinsky model (for α > 0) while allowing for high order consistency. For
instance, if the filter is such that for smooth solutions ‖PH(uh)−uh‖ = O(Hk+1),
then the subgrid term is O(Hk(1−α)+2), which is at most O(Hk+1) if α ≤ k−1. In
particular, in viscous layers, where the solution is smooth, the subgrid term is of
the same order as the consistency error of the underlying numerical scheme.

In weak form, the subgrid semilinear form asgs(uh;uh,vh) can be written:

asgs(uh;uh,vh) = (νt(uh)∇uh,∇vh), uh, vh ∈ Xh (6.4)



Vol. 6 (2004) Mathematical Analysis of LES Models 235

where νt(uh) is given by either one of the two subgrid viscosity techniques de-
scribed above.

6.1.2. The variational multiscale method

An alternative strategy proposed by Hughes et al. [32, 31, 33], called the LES
“variational multiscale method,” is based on the idea that the additional dissipa-
tion term should act only on the turbulent part of the velocity field and should
leave the resolved part unchanged. This idea amounts to writing the subgrid tensor
in the form ∇·T = (∇· (−νt∇u′))′. Within a two-scale approximation framework,
if we assume that the fluctuation operator (·)′ is self-adjoint and if we identify it to
(I−PH), then the corresponding semilinear form that is added to the momentum
equation is as follows:

asgs(uh;uh,vh) =
(
νt(uh)∇(uh − PH(uh)),∇(vh − PH(vh))

)
, (6.5)

where the turbulent viscosity may take various forms. In [32], the authors propose
the following two possible choices:

νt(uh) = cH2






|D(uh)|
or

|D(uh − PH(uh))|
(6.6)

From numerical tests reported in [31, 33], it is unclear which form of νt performs
the best, but from the approximation point of view, we note that in the regions
where the solution is smooth, the first form of the subgrid term is O(Hk+1), which
is exactly the order of the consistency error of the approximation method, whereas
the other form is unnecessarily much smaller, i.e. O(H2k+1).

6.2. Scale similarity models

Besides approaches that consist in approximating the subgrid tensor as a dissipa-
tive operator, another class of techniques introduced by Bardina et al. [2] aims at
modeling the subgrid tensor as a dispersive operator by assuming scale-similarity.

6.2.1. The standard scale-similarity model

Let F = (̃·) and G = (·) denote two filtering operators, possibly different from
each other. The scale-similarity hypothesis leads to the model

T = ũ ⊗ u − ũ ⊗ ũ ∼ ũ ⊗ ũ − ũ ⊗ ũ (6.7)

where the similarity holds up to a multiplicative constant. Denoting by εF and εG
the length scales associated with the two filters, the hypothesis can be written [45]
as follows:

The eddies smaller than O(εF ) interact with those O(εF ) in the mean in
the same way those O(εF ) interact with those O(εG) in size.
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In a discrete context involving a two-scale approximation strategy, one thinks
of F as an interpolation operator on the grid of size h and of G as PH . In this
framework, assuming the similarity constant to be close to unity, the approximate
subgrid tensor takes the following form:

Th(uh) = PH(uh ⊗ uh) − PH(uh) ⊗ PH(uh),

and the corresponding weak form is

asgs(uh;uh,vh) = (∇· Th(uh),vh), uh ∈ Xh, vh ∈ Xh. (6.8)

When compared to DNS, this model shows very high correlations with the
actual subgrid tensor [2, 30]. However, in practice, according to Ferziger [14],
“it is found that this model hardly dissipates any energy and cannot serve as a
stand alone SGS model”. In other words, when used alone, this model yields
unsustainable numerical instabilities, the reason being that the semilinear form
asgs is not positive. Layton [45] has analyzed this problem in more details and
has proposed minor modifications to the model in order to obtain coherent energy
estimates.

6.2.2. A modified scale-similarity model

Noting that the scale-similarity hypothesis can be restated as follows:

ũ ⊗ u ∼ ũ ⊗ ũ + ũ ⊗ ũ − ũ ⊗ ũ, (6.9)

and using the notation ũ′ = ũ− ũ, so that ũ = ũ + ũ′, Layton in [45] proposes to
further develop the right-hand side of (6.9) such that

ũ ⊗ u ∼ ũ ⊗ ũ + ũ ⊗ ũ′ + ũ′ ⊗ ũ + R(ũ),

where the residual R(ũ) reads

R(ũ) = ũ ⊗ ũ − ũ ⊗ ũ + ũ ⊗ ũ − ũ ⊗ ũ + ũ′ ⊗ ũ′.

The tensor R is then modeled using one of the dissipative subgrid viscosity mod-
els presented in the previous section 6.1.1., and we shall henceforth denote by
asgs(u;u,v) the corresponding semilinear weak form.

Now let us turn our attention to the remaining tensor. The original result
pointed out in [45] is that this tensor is dispersive; i.e., its contribution to the
global kinetic energy balance is zero. More precisely, let us define the following
semilinear form:

b(ũ; ṽ) =
∫

Ω

∇·
(
ũ ⊗ ũ + ũ ⊗ ũ′ + ũ′ ⊗ ũ

)
· ṽ dx.

Proposition 6.1. Provided the linear filter [·] is self-adjoint and commutes with
differential operators, then for all smooth solenoidal vector field ũ we have b(ũ; ũ)
= 0.
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This property is essential to prove existence of solutions to the modified Navier–
Stokes equations. Unfortunately, when it comes to discretize the above semilinear
form one cannot expect the incompressibility constraint, the commutation, and
the self-adjointness hypotheses to be satisfied exactly. We now suggest a slightly
changed formulation in order to remedy with these difficulties.

6.2.3. Proposition for a new scale-similarity model

Our approach is to further modify the formulation by rewriting the transport term
in rotational form using the identities (3.11). Invoking the fact that the velocity
fields are solenoidal, we have

∇·
(
ũ ⊗ ũ

)
= ũ ·∇ũ = (∇×ũ) × ũ +

1
2
∇ũ

2

and

∇·
(
ũ ⊗ ũ′ + ũ′ ⊗ ũ

)
= ũ′ ·∇ũ + ũ ·∇ũ′

= (∇×ũ) × ũ′ + (∇×ũ′) × ũ + ∇
(
ũ′ · ũ

)
.

Then, the semilinear form b(·; ·) introduced above can be rewritten as follows:

b(ũ; ṽ) =
∫

Ω

[
(∇×ũ) × ũ

]
· ṽ +

[
(∇×ũ) × ũ′ + (∇×ũ′) × ũ

]
· ṽ dx

+
∫

Ω

∇
(1
2
ũ

2
+ ũ′ · ũ

)
· ṽ dx,

Now, we observe that the filter involved in the second term on the right-hand side
of above inequality, is not exactly G(·) =

[
·
]

but rather its adjoint, so that we
write

b(ũ; ṽ) =
∫

Ω

[
(∇×ũ) × ũ

]
· ṽ +

[
(∇×ũ) × ũ′ + (∇×ũ′) × ũ

]
· ṽ dx

+
∫

Ω

∇
(1
2
ũ

2
+ ũ′ · ũ

)
· ṽ dx.

It is clear that the third term can be added to the pressure by redefining the total
pressure as π = p + 1

2 ũ
2

+ ũ′ · ũ. Then, upon defining the semilinear form

c(ũ; ṽ) =
∫

Ω

[
(∇×ũ) × ũ

]
· ṽ +

[
(∇×ũ) × ũ′ + (∇×ũ′) × ũ

]
· ṽ dx

we have the following property.

Proposition 6.2. For all smooth vector field ũ we have c(ũ; ũ) = 0.

In other words, the contribution to the kinetic energy balance of the sum of the
transport term and the subgrid term is zero pointwise. Note that this property
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does not depend on the value of the divergence of the vector field nor on any
commutation property between the filters and the differential operators. This new
modeling shortcuts ongoing debates on the commutation problem.

At the discrete level we replace ũ by uh and ũ by uH = PH(uh). By denoting
the subgrid component of uh by uH

h = uh − uH , we introduce

dsgs(uh;vh) =
(
(∇×uH) × uH

h + (∇×uH
h ) × uH ,PH(vh)

)
.

Then, the discrete two-scale Navier–Stokes problem can be recast in its final form
as follows:






Find uh ∈ C1(0, T ;Xh) and ph ∈ C0(0, T ;Mh) such that,

(dtuh,vh) +
(
(∇×uH) × uH ,vh

)
− (πh,∇· vh) + ν(∇uh,∇vh)

+ dsgs(uh;vh) + asgs(uh;uh,vh) = (f ,vh), ∀vh ∈ Xh

(qh,∇· uh) = 0, ∀qh ∈ Mh

uh|t=0 = Ihu0,

(6.10)

where πh is an approximation of the total pressure.

6.3. Subgrid viscosity stabilization

The goal of this section is to give a partial mathematical justification for the
two-scale LES discrete models introduced above. We show that these models
are closely related to a class of stabilizing techniques that solves non-coercive
PDE’s. More precisely, we show that adding a two-scale subgrid viscosity to the
Galerkin formulation yields a method that is optimal for approximating linear
contraction semi-groups of class C0. Throughout this section we shall use the
following definition:

Definition 6.1 (Graph of a function and graph norm). Let E and F two normed
spaces and let f : E −→ F . The graph of f is defined as the subset of E ×F such
as

graph f = {(x, f(x)); x ∈ E}.

The graph norm on E, associated with the function f , is defined as:

‖x‖f = ‖x‖E + ‖f(x)‖F

where ‖ · ‖E and ‖ · ‖F are norms defined on E and F respectively.
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6.3.1. The continuous setting

To illustrate our point of view, we consider hereafter the following linear problem.
For f ∈ C1([0,+∞[;L) and u0 ∈ D(A),






find u ∈ C1([0,+∞[;L) ∩ C0([0,+∞[;D(A)) such that,
u|t=0 = u0,

dtu + Au = f,

(6.11)

where L is a separable Hilbert space and A : D(A) ⊂ L −→ L is a linear operator.
We assume that A is monotone:

∀v ∈ D(A), (Av, v)L ≥ 0, (6.12)

and A is maximal

∀f ∈ L, ∃v ∈ D(A), v + Av = f. (6.13)

The reader may take L = L2(R) and of A = ∂x for simplicity. Now let us set
V = D(A) and let us equip V with the graph norm: ‖v‖V = ‖v‖L + ‖Av‖L.
It can be shown that, the graph of A being closed, V is a Hilbert space when
equipped with the scalar product (u, v)L + (Au,Av)L. For the sake of clarity in
the presentation, we assume hereafter that V is a space of vector-valued functions
on Ω in R

m, m ≥ 1.
Owing to the Hille–Yosida theorem (see e.g. Brezis [4, p. 110] or Yosida [75,

p. 248]), problem (6.11) is well-posed and admits the following stability properties
{
‖u‖C0([0,T ];L) ≤ c (‖u0‖L + T‖f‖C0([0,T ];L)),
‖u‖C1([0,T ];L) + ‖u‖C0([0,T ];V ) ≤ c (‖u0‖V + T‖f‖C1([0,T ];L)).

(6.14)

The fact that A is maximal is a key ingredient for proving the well-posedness
of (6.11). This property can be better understood in the light of the following
proposition:

Proposition 6.3. Let E ⊂ F be two Hilbert spaces with dense and continuous
embedding, and let A ∈ L(E;F ) be a monotone operator. The following two
properties are equivalent.

(i) A is maximal.
(ii) There exists two constants c1 > 0, c2 ≥ 0 such that

∀u ∈ E, sup
v∈F

(Au, v)F

‖v‖F
≥ c1‖u‖E − c2‖u‖F . (6.15)

The key to the theory developed herein is to build a discrete framework for
which a discrete counterpart to (6.15) holds.

When it comes to approximating the solution to (6.11), it is known that the
Galerkin technique is not appropriate if A is not coercive. In general, it is not
possible to guarantee optimal convergence in the graph norm, since the discrete
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counterpart of (6.15) is usually not satisfied uniformly with respect to the mesh-
size. As a consequence, when approximating this type of equation supplemented
with non-smooth data, the approximate solution exhibits spurious node-to-node
oscillations. The two-level subgrid viscosity technique developed in Guermond
[25, 27, 26] is one possible cure to this problem.

6.3.2. The discrete setting

Let us introduce three finite dimensional spaces Xh, XH , XH
h such that

V ⊃ Xh = XH ⊕ XH
h . (6.16)

We assume that Xh, XH have suitable interpolation properties; that is, there
is a dense subspace W ⊂ V together with a linear interpolation operator IH ∈
L(W ;XH) and two constants k > 0, c > 0 such that

∀H, ∀v ∈ W, ‖v − IHv‖L + H‖v − IHv‖V ≤ cHk+1‖v‖W . (6.17)

One may view Xh as a fine scale space, XH a coarse scale space and XH
h a subgrid

scale space where basis functions are highly fluctuating.
Denoting by h and H the meshsizes on which Xh and XH are built respectively,

we assume that H and h are of the same order; i.e. c1h ≤ H ≤ c2h. In practice
we shall always use H = 2h. As a result, Xh being finite dimensional, we assume
that there exists ci > 0, independent of h and H, such that

∀vh ∈ Xh, ‖vh‖V ≤ ciH
−1‖vh‖L. (6.18)

Note that this hypothesis indirectly implies that A is a first order differential
operator and justifies the assumption c1h ≤ H ≤ c2h.

We define PH : Xh −→ XH as being the projection of Xh onto XH that is
parallel to XH

h . We assume that

PH is stable in the norm of L uniformly w.r.t H and h. (6.19)

For all vh in Xh we denote

vH = PHvh and vH
h = (1 − PH)vh.

We introduce bh ∈ L(XH
h ,XH

h ) s.t. for all (vH
h , wH

h ) ∈ XH
h × XH

h ,

bh(vH
h , wH

h ) = H

∫

Ω

∇vH
h · ∇wH

h dx. (6.20)

Note that bh is a dissipative bilinear form. It is a subgrid viscosity that acts only
on the subgrid scales. This property has to be put in parallel with the subgrid
model (6.6) advocated in Hughes et al. [32] for which the theory discussed herein
may be regarded as a partial justification.

Now we introduce the main hypothesis of this section, i.e. we assume that a
discrete version of (6.15) is satisfied. More precisely, we assume that there are
c1 > 0 and c2 ≥ 0, independent of (H,h), such that

∀vh ∈ Xh, sup
φh∈Xh

(AvH , φh)L

‖φh‖L
≥ c1‖vH‖V − c2‖vh‖L. (6.21)
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Let us assume that u0 ∈ W so that u0 can be approximated by IHu0. Then,
the discrete problem we consider is






Find uh ∈ C1([0,+∞[;Xh) s.t.

(dtuh, vh)L + (Auh, vh)L + bh(uH
h , vH

h ) = (f, vh)L, ∀vh ∈ Xh,

uh|t=0 = IHu0.

(6.22)

This problem has a unique solution, for it is a system of linear ordinary differential
equations. The major convergence result of this section is the following.

Theorem 6.1. Under hypotheses (6.17), (6.18), (6.19), (6.20), and (6.21), if u is
in C2([0, T ];W ), then uh satisfies the following error estimates.

‖u − uh‖C0([0,T ];L) ≤ c1H
k+1/2, (6.23)

[
1
T

∫ T

0

‖u − uh‖2
V

]1/2

≤ c2H
k, (6.24)

where the constants c1 and c2 are bounded from above as follows.

c1 ≤ c [H + T (1 + T )]1/2 ‖u‖C2([0,T ];W ), c2 ≤ c [1 + T ] ‖u‖C2([0,T ];W ).

Note that the norms used in the error estimates are the same as those of the
stability estimates (6.14). The estimate (6.24) is optimal in the graph norm.
The estimate (6.23) is the same as that obtained by the Discontinuous Galerkin
technique (see for instance Johnson and Pitkäranta [34]).

The present theory can be extended to the coercive case, for instance in the
case where the differential operator is of the form A + εD, A being a first order
differential operator and D a coercive second order differential operator. From a
mathematical point of view, the coercivity of D implies that the evolution equation
is parabolic. If ε is O(1), the Galerkin technique is optimal, but if ε is small, the
coercivity is not strong enough to guarantee that the Galerkin approximation is
satisfactory. It is shown in [26] that by using the same two-level framework as
above and by perturbing the Galerkin technique with the same bilinear form bh as
above, Theorem 6.1 still holds. The remarkable result here is that the estimates are
uniform with respect to ε, and optimal convergence is obtained in the graph norm
of A. If we think of A as being a transport operator and D being a Laplacian,
then convergence on the gradient of the solution in the streamwise direction is
guaranteed whereas only L2 convergence is guaranteed in the crosswind direction.

6.3.3. Examples and extension to the nonlinear case

A variety of discrete functional frameworks satisfying the hypotheses above are
described in [25, 27, 26]. We choose to describe here the simplest one, i.e. the P1

framework, as it is probably used implicitly by many authors in LES. For the sake
of simplicity we assume that Ω is a polyhedron in R

d (d = 2 or 3) and TH = ∪{KH}
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is a regular triangulation of Ω composed of affine simplices. Let us assume that V
is composed of vector-valued functions in R

m. Let us define first XH by

XH = {vH ∈ H1(Ω)m; vH|KH
∈ P1(KH)m, ∀KH ∈ TH}. (6.25)

In 2D, from each triangle KH ∈ TH , we create four new triangles by connecting the
middles of the three edges of KH . In 3D, from each tetrahedron, we create eight
new tetrahedra by proceeding as follows: on each face we connect the middles of the
edges, and choosing arbitrarily two non-intersecting edges we connect the middles
of these two edges. Let h = H/2 and Th denote the resulting new triangulation.
For each macro-simplex KH , we define P as being the space of functions that are
continuous on KH , vanish at the vertices of KH , and are piecewise P1 on each
sub-simplex of KH . We define

XH
h = {vH

h ∈ H1(Ω)m | vH
h|KH

∈ P
m, ∀KH ∈ TH}. (6.26)

By setting Xh = XH ⊕ XH
h , it is clear that we can characterize Xh by

Xh = {vh ∈ H1(Ω)m | vh|Kh
∈ P1(Kh)m, ∀Kh ∈ Th}. (6.27)

The couple (XH ,Xh) is referred to as the two-level P1 setting.

φ1

φ3

φ2

φ5 φ4

φ6
φ1

φ3

φ2

φ1+φ3
     2

φ1+φ2
     2

φ2+φ3
     2

P
H

Fig. 4. Definition of PH for the two-level P1 setting.

In Figure 4 we show a schematic representation of the action of the filter PH :
Xh −→ XH on a macro-element KH of TH .

Numerical tests presented in [25, 27, 26] reveal that the present technique per-
forms as predicted in the theory. However, when it is tested on rough solutions,
i.e. discontinuous solutions or solutions exhibiting shocks, localized spurious os-
cillations are still present in the vicinity of discontinuities. These residual oscil-
lations are due to the Gibbs phenomenon, which is well-known to those working
on nonlinear conservation laws. It is the manifestation of a well-known theorem
in analysis that states that truncated Fourier series of a given function does not
converge uniformly to the function in question unless the function is very smooth
(continuity is not enough), see Rudin [64, p. 97–98] for more details. A simple
trick to eliminate this undesired oscillations consists of adding strong dissipation
in the region where the solution is rough. Of course, one does not know a priori
where the solution is rough, but one may expect that in this region the quantity
∇uH

h = ∇(uh−PHuh) is of the same order as ∇uh. Hence, we are led to introduce
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the following shock-capturing nonlinear form:

ch(uh;uh, vh) = cscH

∫

Ω

|∇uH
h |

|∇uh|
∇uh · ∇vh dx. (6.28)

Then, (6.22) must be modified by replacing bh(uH
h , vH

h ) by bh(uH
h , vH

h )+
ch(uH

h , uh, vh). Unfortunately, no theory is available for supporting the presence
of ch, though it has been shown to be extremely efficient in applications. Note
that in regions where |∇uH

h | is of order |∇uh|, the added viscosity is O(H) as it
should be. Note also the similarity between this term and (6.2) and (6.3) where
for dimensional reasons H|∇uH

h |/|∇uh| is replaced by H2|∇uH
h |; hence, we can

also interpret (6.4) as a shock-capturing operator.
We also mention that if in (6.28), |∇uH

h | is replaced by the residual of the
equation, then it can be proved for scalar conservation laws that this term yields
an L∞-estimate on the approximate unknown (i.e. a maximum principle) that
guarantees convergence to the entropy solution (see the series of papers by Johnson,
Szepessy et al. [35, 36, 71]).

We now provide a spectral interpretation of the respective effects of bh and
ch. The bilinear form bh is a viscosity term that takes care of the non-coercive
(i.e. hyperbolic) character of the equation, whereas ch is a shock capturing term
that takes care of the Gibbs phenomenon induced by discontinuities. The bilin-
ear form bh suppresses wide-spreading (i.e. unlocalized) node-to-node oscillations
induced by the lack of coercivity. As a result, this term attenuates only the high
wave-number modes, possibly producing a dip on the tail of the spectrum of the
solution as observed in [7] when Galerkin Least-Squares is used alone to simulate
the Kolmogorov cascade. On the other hand, Gibbs oscillations induced by dis-
continuities are very localized around the discontinuities, which means that their
spectral range is wide and centered in the intermediate wave-number modes. As a
result, ch acts on intermediate wave-number modes. These crude observations may
explain why stabilization and shock capturing must be used jointly to reproduce
the k−5/3 cascade in LES as observed in [7]. In conclusion, the selection of the
values of the constants scaling bh and ch is an issue that seems to be important in
practice. Some tentative mathematical answers such as in [5] could be proposed
to evaluate optimal constants, but also a pragmatic option could be to utilize one
of the strategies suggested by Lilly in [52].

7. Concluding remarks

The motivation and objectives in writing the present paper were primarily to
advance mathematical arguments to justify LES modeling. We have analyzed
filtering techniques, nonlinear viscosity methods, spectral eddy-viscosity methods,
and two-scale methods. The analysis of these different LES strategies has revealed
mathematical patterns that suggest criteria for developing a rigorous mathematical
theory for LES. Among the possible criteria, we propose the following:
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(i) Regularization: LES should regularize the Navier–Stokes equations; that
is, LES should transform the (possibly ill-posed) Navier–Stokes equations
into a well-posed set of PDE’s.

(ii) Selection of a physically relevant solution: LES should select physi-
cally relevant solutions of the Navier–Stokes equations; that is, LES should
select “dissipative solutions” à la Duchon–Robert [13, 63] or “suitable weak
solutions” à la Caffarelli, Khon, Nirenberg [6], and Scheffer [67].

The filtering techniques, such as the Leray regularization and the NS-α model,
satisfy these two criteria. These techniques are based on a partial filtering of the
nonlinear advection term. We believe they are the most appropriate justifications
for the filtering methodologies currently employed in LES. In passing, we have
shown that filtering the NS equations and closing them as accurately as possible,
i.e. possibly exactly, in the hope that the resulting problem is simpler to solve, is a
paradoxical program. Indeed, as shown by Germano [20, 21], there exist filters for
which exact closure is possible. For such filters, the solution sets of the filtered and
unfiltered Navier–Stokes equations are isomorphic; as a result, no gain should be
expected since the number of degrees of freedom required to represent the filtered
and the unfiltered solutions are identical.

The nonlinear viscosity methods like those proposed by Kaniel [37], Ladyžen-
skaja [43, 42], and Smagorinsky [69] satisfy both criteria. These techniques consist
in adding a vanishing nonlinear viscosity to the momentum equation. Contrary
to what is frequently claimed in the literature, these regularization techniques do
not require any kind of filtering to be justified.

We have studied vanishing eddy-viscosity methods based on spectral approxi-
mation. Comparing Kraichnan-like eddy-viscosity and Tadmor’s spectral viscosity,
it appears that the former pollutes the spectral accuracy whereas the latter is op-
timal in this respect. Contrary to what is sometimes claimed, we have shown that
these methods are radically different from the nonlinear regularizations of Kaniel,
Ladyženskaja, and Smagorinsky. Nonlinear regularizations yield unique solutions,
whereas uniqueness is an open question for vanishing eddy-viscosity and spectral
viscosity methods. Hence, spectral eddy-viscosity methods do not comply with
the first criterion we have proposed. As a remedy, we have suggested a model
with a spectral hyper-viscosity that preserves spectral accuracy and complies with
criteria (i) and (ii).

Finally, we have reviewed two-scale LES approximation techniques. The anal-
ysis of existing techniques has led us to propose a new dispersive scale-similarity
model that satisfies an energy inequality. On the other hand, we have been un-
able to derive a rigorous mathematical result in favor of these methods. The best
justification we can bring forward is that two-scale LES methods are related to
a subgrid stabilization technique that solves non-coercive PDE’s. However, we
are confident that further mathematical research on this subject will bring new
insights for LES modeling.
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[5] F. Brezzi, P. Houston, D. Marini and E. Süli, Modeling subgrid viscosity for advection-
diffusion problems, Comput. Methods Appl. Mech. Engrg. 190 (2000), 1601–1610.

[6] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions
of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771–831.

[7] F. Chalot, B. Marquez, M. Ravachol, F. Ducros, F. Nicoud and T. Poinsot, A
consistent finite element approach to large eddy simulation, in: 29th AIAA FLuid Dynamics
Conference, Technical Report 98-2652, Albuquerque, New Mexico, 1998.

[8] G.-Q. Chen, Q. Du and E. Tadmor, Spectral viscosity approximations to multidimen-
sionnal scalar conservation laws, Math. Comp. 61 (1993), 629–643.

[9] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection
between the Camassa–Holm equation and turbulent flows in channels and pipes, Physics
of Fluids 11 (1999), 2343–2353.

[10] J. P. Chollet and M. Lesieur, Parametrization of small scales of three-dimensional
isotropic turbulence utilizing spectral closures, Journal of the Atmospheric Sciences, 38
(1981), 2747–2757.

[11] P. Constantin, C. Foias and R. Temam, Attractors representing turbulent flows, Mem-
oirs of the AMS 53 (1985), 314.

[12] C. R. Doering and J. D. Gibbon, Applied analysis of the Navier–Stokes equations, Cam-
bridge texts in applied mathematics, Cambridge University Press, 1995.

[13] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible
Euler and Navier–Stokes equations, Nonlinearity 13, (2000), 249–255.

[14] J. H. Ferziger, Direct and Large eddy simulation of Turbulence, in: A. Vincent, ed.,
Numerical Methods in Fluid mechanics, CRM Proceedings & Lecture Notes 16, Centre de
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