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We apply the method of operator splitting on the generalized Korteweg—de Vries
(KdV) equationu; + f (U)yx + eUyxx = 0, by solving the nonlinear conservation law
u; + f(u)x =0 and the linear dispersive equatiap+ suyxx =0 sequentially. We
prove thatif the approximation obtained by operator splitting converges, then the
limit function is a weak solution of the generalized KdV equation. Convergence
properties are analyzed numerically by studying the effect of combining different
numerical methods for each of the simplified problems; 1999 Academic Press
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1. INTRODUCTION

There are at least two fundamentally different approaches to computations of nume
solutions of the Korteweg—de Vries (KdV) equation

Ut + Uy + Uxxx = 0, u(x, 0) = ug(x).

One approach is based on appropriate finite difference approximations. See, e.g., [27.
Alternatively, one can use the inverse scattering transform; see, e.g., [23, 4]. This methc
had enormous impact on the analysis of the KdV equation and other completely integ
equations, but can also be used numerically; see, e.g., [26, 24, 25]. For an extensive
of numerical methods associated with completely integrable equations we refer to

and Ablowitz, [31-33]. The inverse scattering transform method can briefly be descr
as follows: One considers the solutiam, of the nonlinear equation as an entry in a
associated linear problem. In the case of the KdV equation one introdirtée stationary

Schidinger equation—xx + Uy = Ay, as a potential parametrized by the variable

For this equation one first computes the appropriate scattering quantities (reflectior
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transmission coefficients, bound states, etc.) for the initial dath turns out that whemu
solves the KdV equation, the scattering quantities develop as functibirsari explicit and
trivial manner (e.g., the eigenvalues remain unchanged). Subsequently, one has to solv
inverse problem of computing the potentigl, t) from the scattering data. The function
u(x, t) then solves the KdV equation for any timelngenious as this method is, it is
however restricted to the KdV equation and other completely integrable equations. Sr
perturbations of the equation will render this method useless.

We will in this paper, in contrast to the methods discussed above, apply the methoc
operator splitting to generalized KdV equations of the form

U+ F(Wx 4+ elxxx =0,  u(x,0) = Up(X). 1)

In the special case of (u) =u?/2 ande =1 it reduces to the KdV equation, while for
f(u)=u®/3 ande =1 we obtain the modified KdV equation, another completely inte
grable equation. Preliminary qualitative numerical experiments using operator splitt
were reported by Tappert [34]. Numerically he investigated equations of the form

U+ f(Wx+Lux=0,  u(x,0) = up(x), @)
wherelL is a linear pseudodifferential operator with constant coefficients. By first solvin
U+ f(u)x =0, ®3)
using an implicit finite difference scheme, and subsequently solving
U+ Lux =0, (4)

using discrete fast Fourier transform, he studied perturbations around the KdV equat
The principal result was that the KdV equation is morphologically stable in the sense t
a small deviation from the KdV equation does not seem to alter qualitative features of
equation, e.g., interaction of solitons.

There are extensive theoretical results on the generalized KdV equation (1). Solution
(1) are unique within the proper class of function classes. We can summarize the pre
results as follows: Assume thdtis C* with f(0)=0 and|f’(u)| <C |u|P for pe (0, 2].
Consider initial dataip such that1+ max(x, 0))#/?uy € L2(R) with 8 =1/p — 1/4. Then
there exists (see Ginibeg al.[8, 7]) a unique solution such thati € L>([0, 0o); LZ(R)) N
C, ([0, 00); L2(R)) N L2.([0, oo); HL.(R)). HereC,, denotes the set of weakly differen-
tiable functions. There are also results in the case wig2, 3). Briefly, these types of
results are obtained by regularizing Eqg. (1) by adding the texx — Uxx) to the
left-hand side of (1). The regularized equation has a unique solution, and by a certain c
pactness argument one obtains convergence of a subsequence in thedifib a solution
of (1). An additional argument proves uniqueness within the proper class of functions.

For initial dataug in H? the result reads as follows: Assume tHais C2 with | f/(u)| <
C |u|®2+7 NowEqg. (1) has aunique solutioninthe cl&3®; L2(R)) N L>(R; HL(R)) N
L2(R; Hige®) NLI(R; LT, 4, »(R)); see Keniget al. [16]. The result holds for ang <
[0, 6g], @ € [0, 1/2] with 6o = min(1, 2y) andq=6/6(x¢ + 1), p=2/(1—6).

For further analytical results see [15, 17, 39].
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We now describe our operator splitting strategy. Bety and A;up denote the solution
of the initial value problems

ur+ fWx =0, u(x, 0 = uo(x), )
and
U+ elxxx =0, U(X, 0) = Up(x), (6)
respectively.
The idea of operator splitting is to solve Egs. (5) and (6) sequentially, and approxin
the solution of (1) as

Uat(X, NAL) = [Axg 0 Sar]" Uo(X). (7)

The method of operator splitting has successfully been applied to several other prob
of the form

U+ FWx = FXt U ug), U, 0) = Uo(X), (8)

by solving the equations
U+ f(ux =0
and
ut = F(X7 t5 u7 uXX)

separately. In particular, Karlsen and Risebro [14] analyzed thécasau,, using operator
splitting. By using a dimensional splitting in addition, their result also covered the mu
dimensional case. A more sophisticated splitting algorithm was presented in [13]. Hol
and Risebro [10] used operator splitting to study the case Withg(t, x, u) in the more
complicated case of a stochastic source. An unconditionally stable splitting scheme
the equation withF = euxx + g(t, X, u) was analyzed in [12]. Finally, Evje and Karlsen
[5] treated the case with a possibly degenerate viscous Fesra(u)uy)y, wherea may

vanish, using operator splitting.
There is an important different®etween the diffusive or viscous case

U+ F(Wx =eUxx,  U(X, 0) = Uo(X), 9)
and the dispersive case
U+ F(U)x = —gUxxx,  U(X, 0) = Uo(X), (10)

1Here Ao B denotes the composition of two operatéraind B.
2The sign in front of the highest derivative is vital in the diffusive case, but only changes the direction of
waves in the dispersive case.
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namely the deep fact that limits as-> O of solutions of the two equations are distinct; see
[18-20]. Limit solutions of (9) are used as entropy conditions to define the unique we
solution of the conservation law + f (u)y = 0.

More precisely, as — 0+, the generalized KdV equation (1) formally reduces to the
conservation law

U + f(ux =0, u(x, 0) = up(x), (11)

whose solutions may develop shocks. Itis well known that the correct shock (discontinuc
solutions of (11)—interpreted in the sense of distributions—can be obtained as kfrong
limits of smooth solutions of the dissipative regularization (9 as 0+. The situation for
the dispersive regularization (10) is radically different. More precisely, wheceeds the
shock formation time for the conservation law (11) with=u?, the solutionu® of (10)
behaves in an oscillatory manner over soriaterval. Ase — 0+, the amplitude of these
oscillations remains bounded but does not tend to zero, and its wave length is abDgsgler
Thus dispersive solutions® only converge weakly to some limit functianass — 0+.
Furthermore, it is easy to see that the limitloes not satisfy the conservation law (11) in
the sense of distributions. On the other hand, it is well known that when the solution of
conservation law (11) is smooth, then the dispersive solution of (10) converges uniforml
that smooth solution as— 0+. Recall that wherf = u?, the weak limit can be calculated
explicitly; see Lax and Levermore [18-20] and Venakides [35, 36]. We also refer to t
recent review papers of Levermore [21] and Venakides [37] (and the references ther
for a detailed overview of the known results of the KdV small dispersion limit problen
We refer to Goodman and Lax [9] and Hou and Lax [11] for numerical investigations
the phenomena of oscillations and weak convergence of solutions of dispersive differe
schemes for (11).

The very fact that our operator splitting method uses (approximate) solutions of the ¢
servation law (11) that are consistent with the dissipative equation (9), and not in gen
the dispersive equation (10), may at first glance generate some doubts about the soun
of the operator splitting method and whether it can produce approximate solutions f
will converge to the correct solution of the generalized KdV equation (Btas- O+. But
concerning this issue one should of course bear in mind that wid@comes sufficiently
small, the hyperbolic solutio®;Up remains smooth (no shocks are formed), at least fc
smooth initial data, and then, in view of the discussion above, this solution will be consist
with both the dissipative equation (9) and the dispersive equation (10). Due to incon:
tencies between the topologies used in the analysis of conservation laws and genera
KdV equations, we have not been able to show that the operator splitting approximati
converge. Buif they converge to some limit function, we show below that this limit mus
in fact satisfy the generalized KdV equation (1) in the sense of distributions. Furthermc
the numerical results presented here strongly suggest that operator splitting approxima
converge to the correct solutions as the discretization parameters tend to zero.

We will now describe the content of the paper more precisely. In Section 2 we first desci
fundamental properties of solutions of the conservation law (5) and the linear dispers
equation (10). The incompatibility of properties of solutions of the two equations make:
hard to obtain strong rigorous results. However, we prove a Lax—Wendroff type of res|
Assuming that the operator splitting method converges, we establish that the limit indi
is a weak solution of the generalized KdV equation.
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In actual computations exact solutions of the conservation law and the linear dispel
equation will have to be replaced by approximations, and in Subsections 2.2 and 2..
describe the numerical methods employed for the linear dispersive equation and the
servation law, respectively. In the first case we consider a direct difference approxime
and a fast Fourier transform. In the latter case we utilize the Godunov method and an |
scheme as well as a spectral viscosity method.

In Section 3 we present numerical results for an explicit solution of the different
equations, namely one- and two-soliton solutions of the KdV equation. The results
summarized in Section 4.

2. OPERATOR SPLITTING

We consider the Cauchy problem for the generalized KdV equation

Ut + f(u)x + elxxx = 0,

u(x, 0) = ug(x), (12)

with a suitable initial functionug. Our strategy is alternately to solve the conservation la

ur + f(uy =0, (13)
u(x, 0) = uo(x),
and the linear dispersive equation
Ut + eUyxx = O, (14)

u(x, 0) = up(x).

Let § be the solution operator associated with the conservation law (13); i.e., we write
unigue weak solution to (13) asx, t) = Sug(x). Similarly we denote the solution operator
associated with the linear dispersive equation (14M\byrhen we approximate the solution
of (12) by

Uat(X, NAt) = [Aat 0 Sar]" Uo(X) (15)

for some (small) time stept. Of course, when this approach is implemented, l#gtAnd
S must be replaced by numerical methods.

2.1. Analytical Results

Solutions of (1) possess a smoothing property that stems from the dispersive term
Craiget al.[3] for details and precise statements. The linear dispersive equation has st
smoothing properties, while the equation for the nonlinear hyperbolic conservation
encounters steepening of gradients and formation of discontinuities, i.e., shocks. Thu
two equations are characterized by quite distinct behaviors. The solutioug of the
hyperbolic conservation law (13) has several important properties:

(i) maximum principlelu(-, t)lleo < [lUollco;
(i) LP stability, lu(-,t)|lp < [luollp for p>1;



208 HOLDEN, KARLSEN, AND RISEBRO

(iii) total variation diminishing (TVD), TMu( -, t)) < TV (up), where TV denotes the
total variation®

(iv) L1 contractive,|lu(-,t) —v(-,t)]|l; < |luo— voll1, Wherev= Svg is another
solution of (13);

(v) Lipschitz continuous in timeju(-,t) — u(-,s)|l; <O@)TV(up) |t — 5]

On the other hand, the linear dispersive equation (14) will in general have small disper:
waves moving rapidly in one direction. More precisely, we have (see [17, 7, 16]) with initi
datauo in L2(R) andD := [;° x**1/2 |ug(x)| dxX < oo, that the solutiom = A;ug satisfies:

(i) uis continuous for any > 0.
(i) supy<¢<7 luC-, Oz < [luoll, for someT > 0.
(iif) sup,, lu(x,t)] <Ct¥/3for 0<t < T with the constan€ depending om, T,
Xo, llUoll2, andD.
(iv) uyx € L2([R; L2 (R)).

Incompatibilities between the topologies used in the analysis of the conservation |
(13) and the linear dispersive equation (14) makes it very difficult to establish rigorou:
convergence of the operator splitting method. However, it is possible to prové that
operator splitting approximations converge to some limit functioméagends to zero,
then this limit must in fact be a weak solution of the Cauchy problem (12). Suppose t|
Uo € L?(R). We then say that is a weak solution ofR x [0, T], T >0, of the Cauchy
problem (12) if

u e L*®(0, T]; L2(R)) (16)

andu satisfies the the Cauchy problem (12) in the sense of distributions; that is, for any
function¢ e C§° that vanishes for> T,

T o) o)
/ / (el + 6 (L) + edhext) dx dt + / $(x. O dx=0.  (17)
0 J—oo —0o0

It has recently been proved that weak solutions are uniquely determined by their dat
the special casé = u?; see Zhou [39]. In the following, we assume that the functiog
and A;ug are (exact) weak solutions of their respective equations. Inspired by [13], let
introduce the auxiliary functiont,

S-tyu", t € [tn, thya/2],
Uat(t) = n " (18)
[A2(t—ty12) © Sat] U™, t € [thr/2, thyal.
where for brevity we write (cf. (15))
u"(X) = Uat(X, NAL) = [Aa © Sat]" Uo(X). (19)

Clearly
Uat(th) = U = [Aat o Sat]"Uo, for all n.

3 The total variation may be defined by TW) = supZ‘ [u(Xi+1) — u(x)|, where the supremum is taken over
all finite partitions{x; } with x; < X; 1.
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Note also that
luatG, Oll2 < lluatC, O)ll2, Yt >0,
at least whenig € L2(R), and thus
Uat € L0, T]; LAR)). (20)
In the following, we assume that
Uat — U strongly in L,OC(R x [0, T). (22)

More generally, we could also have assumeddiRat> u almost everywhere iR x [0, T].
In view of (20), it certainly follows that

u e L*®([0, T]; L2(R)). (22)

We would like to show that the limit in (21) is a weak solution of (12). To this end, fix
test functiony € C§° that vanishes for > T and define a new test function by

t
o(x, 1) = ¢(x, 5)'
Let
() = SU", te[o,At].

Then sincev"(t) satisfies the conservation law (11) in the sense of distributior® en
[0, At] with initial datau”, the following integral equality holds,

tht1/2
/ / ( tUAt+¢xf(UAt)) dx dt
th

At
—5/ / (0r (X, T 4 2t)0" () + @x (X, T + 2ty) f (0" (1)) dx dr
0 —00

1 [ 1 [
=§/ ¢(x,tn+1/z)un+l/2dX—§/ o (X, thu"dx, (23)

where we have used the substitutior= 2(t — t,,) and introduced the short-hand notatior
u"t1/2 = S,un. Similarly, let

w'(t) = A2t €0, At].

Then sincew"(t) satisfies the linear dispersive equation (14) in the sense of distributi
onR x [0, At] with initial datau™*%/2, the following integral equality holds,

thi1
/ / ( PrUnat + 8¢xxxUAt> dx dt
tn+1/2 -

At
=5 / / (9 (X, T+ 2tns22)w" (7) + £@uxx(X, T + 2tns12)w" (7)) dx de
0 —00

1 [/ 1 [/
=§/ (X, trrpu™dx — é/ ¢ (X, thy1/2)u" 2 dx, (24)
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where we have used the substitutioa= 2(t — t,1/2) and letu"+? denote Pa; o SaeJu”.
Adding together (23) and (24), multiplying by 2, and summing the result over al
0,...,N—1,whereNAt = T, yield the global integral equality

T roo
/o / (UatdtU + 2xat0x T (Uar) + €2(1 — xat)dxxxUar) dx dt
+ / (X, 0)up(x)dx =0, (25)

where xar = xat(X, t) is the characteristic function of the def, R X [tq, thy1/2]. Then
because of (21) and singg, (X, t) — 1/2in L2(R x [0, T]), it follows that

T roo 1 T roo
/ / xat F(Uapdx dx dt — */ / f (U)py dx dt,
Jo J-oo 2 Jo J-

T froo 1 T ,o00
/ / (1 - xat)UatPxxxdx dt — 5/ / Ugyxx dX dt.
0 J—oo 0 J-0

Hence, passing to the limit in (25), we obtain (17). Sigceas arbitrary and because of
(22), it follows that the limitu is a weak solution of the Cauchy problem (12).

Summing up, we have thus proved the following Lax—Wendroff type of theorem fi
operator splitting for generalized KdV equations:

THEOREM 2.1. Suppose thatgie L?(R). Consider the semi-discrete sequence of op
erator splitting approximationgu,;} given by(18) and (19). Suppose that ;4 converges
strongly in L2, (R x [0, T]) to u asAt — 0+. Then ue L>([0, T]; L2(R)) is a weak so-
lution of the Cauchy problerl2); that is it satisfies(17).

To prove this theorem we didot require smoothness of the operator splitting approx
imationu,t. From the point of view of rigorous analysis and the fact that the hyperbol
solution operatof§ in general maps its (even smooth) data iBtd, we stress that this is
indeed the sort of results that we are interested in. But we mention again that it is an o
problem to establish the strong convergence (21) presupposed in the above theorem.

One should note that the above theorem is valid if the exact solutions opegaamicA;
are replaced by numerical methods which produce approximate solutions satisfying t
respective partial differential equations in the sense of distributions with error terms t
tend to zero (slightly) faster thafl (At). Finally, the above theorem can easily be extende
to more general equations of the form [22]

Ug + f(U)x + eg(Wxxx = 0.

We leave the details to the interested reader.

2.2. Methods for the Linear Dispersive Equation

In this section we describe the methods that we use to approximate the linear dispel
equation. For simplicity we drop the so that the equation reads

Ut +Uxxx =0,  Ult=0 = Uo. (26)
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The solution can be expressed explicitly (see, e.g., [17]),

ux ) = [~ A (%2 Juaty dy @7)
where Ai is the Airy function (see, e.g., [1, pp. 446ff].),

] 1 oo y3
Ai(X) = —/ cos(— + yx) dy. (28)
T Jo 3

Most of the technical problems in treating the generalized KdV equation are intrinsic
connected with the oscillatory behavior of the Airy function. Indeed we have

_ c Ix|"Y*sin(Z|x¥2+8&)  forx — —oo,
Ai(x) = (29)

c x4 exp(—2x%/2/3) for x — oo,
for constantc. and&. For numerical computations the explicit formula (27) is of little
help.

2.2.1. A direct difference methodWriting u; = u(ih, t), we approximatelsyx by the
difference quotient

. 1
Uxxx(ih, t) ~ Phe (—Ui—2 + 2Uj_1 — 2Uj 41 + Ui;2) , (30)

fori = —N, ..., N. Writingu = (u_y, ..., Uy)’, we obtain the linear system of ordinary
differential equations

u; = Bu, (31)

where the matrixB is defined by (30) and the type of boundary condition we use. (In
examples we use periodic boundary conditions.) To solve (31), we use the midpoint rt

un-&-l —_u"

_ 1 n+1 n
At = 2B(u +uM), (32)

whereu" denotes the approximate solutionratt. The advantage of using the midpoint
rule, rather than an explicit method, is that the midpoint rule does not have the prohibi
time step restrictiom\t = O(h®). Of course, we pay for this by having to solve a syster
of linear equations, but the matriis banded and solving this system is not expensive
terms of CPU-time or memory. Our shorthand for this method is “Diff.”

2.2.2. Methods based on the fast Fourier transforfAssuming periodic boundary con-
ditions in the interval f-r, 7], we write the solution of (26) as

U(X, t) — Z Cnei (nx+n3t) , (33)

where the constants, are Fourier coefficients of the initial function.
Numerically, we can effectively implement this via the fast Fourier transform. Let

N/2
Z ujezmjk/(N+l)’ (34)

j=—N/2

[ =]
=~
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whereu; =u(jh, -). The inverse transform is given by

1

o ~ —27ijk/(N+1)
Uuj = —— E e . 35
] N 1 - k ( )

The discrete version of the dispersive equation (26) now readshwithh/N

(G — i (27k)%0K = 0, (36)
foreachk = —N/2, ..., N/2. This ordinary differential equation can be solved to give
O(t) = 0(0) @™, (37)

and one can then use the inverse transform (35) touindVe label this method “FFT.”
However, we found that it is unstable when used in conjunction with some of the numeri
methods for the conservation law. Therefore we also solve (36) by using a Crank—Nichol
scheme,

[1 - %w(k)} Ot = [1 + %w(k)} i (38)

where(} = Ox(nAt) andw(k) = i (27k)3. Our shorthand for this method is “FFT-CN.”

2.3. Methods for the Conservation Law

There is a great variety of methods to choose from for the conservation law. Since
have concentrated on smooth solutions of the KdV equation, we have chosen two mett
that give a high order approximation to smooth solutions, and for comparison, one f
order method that is simple and easy to implement. The first order method is Godune
method, and the higher order methods are ENO schemes and the spectral viscosity me
We now give short descriptions of these methods.

2.3.1. Godunov’s method Again, we use the notatian? =u(jh, nAt). Letii(x, 0) be
defined by

a(x,0) = uff for (j —1/2h < x < (j +1/2)h,

forj = =N —1,..., N, and wherau" _, = u}. Godunov’s method is based on using
t(x, 0) as initial data for the conservation law (13), and solving for a time atepand
subsequently defining

1 G+1/2h
uftt= = U(x, At)dx, (39)
hJ-1/2n

wherefi(x, At) is the solution with initial datéi(x, 0). Using the conservation law, we find
that

= o — (R (U U) — F (1)),
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providedAt max f’ < h, and where the so-called numerical flux functiens defined by

{mina<u<b fuy ifa<hb,
F(a b) = (40)

MaX<y<a T (U) if a>b.
In the KdV case, wheré (u) = u?/2, this simplifies to

0 fa<0<h,
F(a,b) = % min[a?, b?] if ab> 0 anda < b,

max[@?, b’ if a>b.

We label this method “Godunov.”

2.3.2. ENO schemesENO (Essentially Non-oscillatory) schemes are finite differenc
schemes based on interpolation of discrete data using polynomials. As long as the da
smooth inside the approximation stencil, the order of the method is high. To circumven
problem of discontinuities arising in the solution of conservation laws, a variable stenc
used.

If cell averages of a function(x) are given by

1 pG+1/2h
u(x) dx,
“h (i-1/2h

<

we find a polynomialp; (x) of degree at mosk — 1 such that it is &th order accurate
approximation ol inside the cellj = [(j — 1/2)h, (j + 1/2)h],

p(X) =u(x) +Oh*)  forxel;.
Letu; andu;r be defined as
U = pj((j £1/2)h).

If we choose a stencil based oreells to the left, and cells to the righty +s+ 1 =k,
then there are constartg andg;;, depending only on, s, andk, such that

K— _
- 1T ) + _ &
u, = Crilj—r+i, uj = Gilj—

i i

=
=~
P

I
o
I
o

For the actual values of the constagisand&;;, see [28].

The basic idea of ENO methods is to avoid including discontinuities in the sten
Therefore, for a fixed, all possible stencils are compared, and the one with the “smoothe
data is used.

The conservation law is then approximated by a system of ordinary differential equati

du; 1 - T
d—tJ = _H[F(u-]t‘rl’ Uj1) — F(UT’ upl,

= Lj(u), (41)
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whereF is the numerical flux function. We have used a Godunov numerical flux (40).
integrate (41) we have used a third order TVD Runge—Kutta method reported in [29],

vl =uf — AtLju"),

3 1
vj2 = ZUT + 2 [v]l — AtL; (Y], 42)
1 2
Uttt = §“T + é[vjz — AtL; (03],
forj = —N,...,Nandn =0,1,2,.... This method is TVD ifAt/h < 1. The reason

for choosing a third order method rather than a fourth or higher order method, is that tr
are no higher£3) order methods that are TVD. Also, good higher order methods are mc
complicated to implement and demand significantly more storage and computer time.

Since we have used a third order integration in time, we also use a third order El
interpolation in space.

2.3.3. The spectral viscosity method:he conservation law is not a linear equation, anc
therefore not obviously suited for spectral methods. However, the spectral viscosity mett
developed by Tadmor [30], has proven to be a good method for conservation laws.

Consider a periodic functiomwith period 1. LetPy be defined as the truncated Fourier
expansion, that is,

N
Pauc) = O™ (43)

k=—N
Now, instead of trying to solve the conservation law, (13), we modify this as

[Pnu]t + [P f(PnW]x = en(Qn(X, ) % (PyU)x)x, (44)

whereQy augments high frequency oscillations, iéﬁk ~ 0for|k| << N andéﬁk ~1
for |k| close toN. Furthermore, the numerical viscosity coefficient behaves dike=
O(1/+/N). In Fourier space, (44) is a system of ordinary differential equations

(@) + 2rik i = —en(27k)? Quyc O, (45)
wheref = f(/Pﬁu). This system of equations can be solved by the Euler method, i.e.,
Pt = 0 — At(27ik ] + en(@rk)? Qp Ok),

forn=0,1,...andk = —N, ..., N. For brevity we writeQ, = Q.

We found that this method of integrating (45) was not suitable, due to severe restricti
on the time step\t. Instead we integrated (45) by a Crank—Nicholson scheme, at the ¢
of having to solve a nonlinear system of equations,

2 -1
aptt = [1 — en Oy (ank) At}

2
A sur- Feno(is i), e
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at each time step. This system can be solved by fixpoint iteration. We iterated
max (ap ™" — ") was less thamt?; herer denotes the number of iterations taken
Usually, this required two or three iterations when the initial guessifas® = . For
the parameter® andey we used

1 6, — 0 fork < v/'N,
NEUN kT I(1+tannik —v/N)))  otherwise

This method is labeled “SpVi.”

2.3.4. An implicit method. In the paper [34], Tappert used an implicit method for th
conservation law, and the method FFT for the dispersive equation. Implicit methods
conservation laws are rarely used since they tend to be unsuitable for discontinuous solu
Here, at least for small time steps, the solution of the conservation law will be continu
In [34] the following Crank—Nicholson scheme was proposed for the conservation law

u?+l n (Qn+l Qr]‘l) , (47)

Whereer1 approximatesf (u)x. We use the Lax—Friedrichs approximation

1
Q= %(f (Ufye) = F(u]_y)). (48)

The resulting nonlinear system of equations is solved by fixpoint iteration, iterating u
the difference between two successive approximations is lessAb&nWe label this
method CN.

2.3.5. A comparison methodFor comparison with other tested methods for solving th
KdV equation, we also implemented the implicit spectral method of Winebiead) [38].
This method is based on the Fourier transform of (12),

(O + (2rik) f — e (2nk)® 0 = 0. (49)

Again, the numerical integration is done with a Crank—Nicholson method, iterating to 1
the solution of the system of equations

~n+1 At - At n+1
et = {1— 7gl (27 k) ] {{1+ —&i (27k) ]uk -5 (fr+ R+ )} (50)

In [38] it is shown that iterating twice gives a second order accurate scheme; consequ
we also iterate twice. We label this method “Spectral.”

Note that integrating (49) by splitting the linear term and the nonlinear term is not go
since solving the nonlinear term amounts to using a spectral method for the conserv
law without spectral viscosity, and this leads to spurious oscillations, which in turn cre
instabilities in the numerical solution of the linear part of (49).
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3. NUMERICAL RESULTS

In practice, we do not use the Godunov splitting (15), but rather the Strang splitting

n+1

U™ = [Satj2 © Aat © Sagj2]u”, (51)

whereu" denotes the numerical approximatiort at nAt and A andS are the numerical
methods for the linear dispersive equation (14) and the conservation law (13), respectiy

In order to test our methods, we use exact one-soliton and two-soliton solutions for
KdV equation

1
Uy + E(Uz)x + elyxxx = 0. (52)

The one-soliton solution is given by

u(x, t) = 3csech <\/E(x — Ct)). (53)
4e

We used: = 0.0013020833 and = 1/3. This solution is a scaled version of the one-solitor
in[4, p. 22].
The formula for the two-soliton is more involved (properly scaled from [4, pp. 74ff.]),

K2 e + k2e + 2(ky — ky)ei 2 + @2 (K2e + Kiele) el +oe

ux, o) =2 (1+e@1+eﬁz +32€01+92)2 ’

(54)

where the constants are given by

2
k1:§ k2:1, a2:(k1 k2> :i

2’ ki + ko 25
X t
0, = k — k3 -3
YT e ted2ge
X t
0, = k — k3 3.
N

Experimenting with various combinations of the methods for the linear dispersive eq
tion and the conservation law, we found that not all combinations were equally well suit
After extensive testing, we were left with the combinations: Diff~Godunov, Diff-ENC
FFT-ENO, and FFT-CN-SpVi as the most stable and accurate. Below we show how tt
combinations perform on the one-soliton case; i.e., we use (53)twitld as initial data.
Figure 1 shows the numerical results at 2, when the peak of the soliton has moved abou
0.7 units. In these computations we used 64 grid points in the interglg] and periodic
boundary data. In the figure we see that the combinations seem to rank from Diff—=Godu
to FFT-CN-SpVi in terms of accuracy.

This is also what we found when measuring how the methods compared in terms
CPU-time versus error. The errors reported here are relative percentage errors, i.e.,

error= 100 [l Uapprox — Uexacl
[l Uexacil

)
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1 0.00 100 20 1 0,00 1.00 2
11 £ 1 ? 0
Airy: Diff Airy: Diff
Cons: Godunov Cons: ENO
07 7 T:20 i 7 7:20
#gridpoints : 64 # gridpoints : 64
#steps: 42 #steps: 42
CFL: 1.00 CFL: 1.00

Ly error: 644 %
Sup error: 58.3 %
0.30 ~ Time used:  0.00

Ly error: 35.3 %
Sup error: 35.3 %
Time used: 1.7

[ 0.71

030

0.10 T T T T
" H | H H
Airy: FFT Airy: FFT-CN
Cons: ENO Cons: SpVi
T 120 I T 120
# gridpoints : 64 # gridpoinss : 64
#steps: 42 #steps: 84
CFL: 100 CFL: 0.50
Ly error: 357 % Ly error:5.1%
Sup error: 32.6 % Sup error: 4.4 %
030 - Time used: 1.7 - 4 Time used: 5.0

[ 071

[~ 030

0.10 T T T T ©.10
110 L L L L 11
KdV : Spectral
Airy: FFT
Cons: CN
071 - - =07t
T:20
T:20 #gridp: 64
#gridp: 64 #steps: 84
#steps: 42 CFL: 0.50
fFLf 1-0307% Ly error: 2.1 %
2 error: L Ky 1.7 %
ol BT | e Low
g Time used: 2.0 o "
-0.10 T T T T -0.10
-1.00 0.00 1.00 2.00 -1.00 0.0 1.00 2.0
FIG. 1. Numerical solution of the one-soliton case. The dashed line indicates the exact solution.

where|| - || is theL ., norm or thel., norm. In Fig. 2 we show the logarithms of CPU-tifne

andL , error, respectively, for the four combinations and for the spectral method (Spect

Again we use the one-soliton case (53), but we have use2t2grid points. This figure

more or less confirms the ranking of the methods from the previous example. The met
Diff-ENO, FFT-ENO, and FFT-CN seem to perform slightly worse than Spectral, ¢
FFT-CN-SpVi slightly better. The method Diff-Godunov, although it seems to convelr

uses significantly more time to reach the same error. Ustfigr@d points, it has roughly
the same error as the other methods usihgril points.

Regarding convergence ratesA, by using linear regression on the above example, v
obtained Table I. The first column gives the numerical convergence rates, and the sei

4The CPU-time is 100CPU-time for the calculationsptthe initial memory allocations and setup of the initial

data. The computations were carried out on a Power MacintogB683
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4 T T T T T T T T
e Spectral
- Diff-Godunov
3 % Diff-ENO
* FFT-ENO
(] FFTCN-SpVi
& FFT-CN
2 - |
S 11 1
@
o
=
& = 1
- e
S \
1 = o
L :
=8 5
H_HH. &\\
TN B
2 ) i
3 | 1 1 I 1 1 1 1
0 1 2 3 4 5 6 7 8 9

log(CPU-time)

FIG.2. L2 errorvs CPU-time.

estimates of how well the variance in the data is explained by the linear model. A low va
for x? indicates good linear fit. The values indicate that Diff-Godunov has a converger
rate of /2, while all the other methods seem to converge at a rate of 1. Remarkabily,
also holds for the second order spectral method Spectral.

We also remark that thie, errors are extremely well correlated with the supremum error:
Hence, using supremum errors would give virtually identical results.

As a more complicated case, we use the two-soliton solution (54). Figures 3 and 4 sl
how the four splitting methods resolved an interaction between these two solitons. Ag
Diff-Godunov ranks poorest; we see that the solitons appear somewhat smeared afte
interaction, while the three other methods are similar. We uégd@points in thex interval
[—0.5, 3.0] and CFL number 1 for all methods except FFT-CN-SpVi, where we used CI
number 0.5. This gives 244 time steps for CElL and 488 for CFl=0.5.

The computations were calculated up te: 6.0, well past the interaction.

TABLE |
Convergence Rates imAx

Rate x2
Spectral 0.76 0.367
Diff~-Godunov 0.52 0.0001
Diff-ENO 1.05 0.077
FFT-ENO 0.96 0.003
FFT-CN 0.94 0.0001

FFT-CN-SpVi 0.89 0.024
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Diff-Godunov Diff-ENO

FFTCN-SpVi

T
)

/Il

FIG. 3. A two-soliton interaction.

Diff-Godunov Diff-ENO

FIG. 4. A two-soliton interaction.
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Ermrer: Diff-Godunoy Error: Dif-Eno

Ermror: Ft-Eno Emor: FRCH-SpYi

FIG.5. Supremum error as a function efandt.

In Fig. 5 we show the supremum error for these four methods as a functioanaft. In
this connection we remark that we can see that the main source of error in Diff=Godul
is that the location of the solitons is wrong after the interaction.

4. CONCLUSIONS
We have applied the method of operator splitting to the generalized KdV equation
U+ F(Wx +elxx =0, U(X, 0) = Uop(x),
by sequentially solving the hyperbolic conservation law,
U+ f(Wx =0, u(x,0) = uo(x), (55)
and the linear dispersive equation,
Ut + eUyxxx = 0, u(x, 0) = up(x). (56)

The two simpler equations have quite distinct and incompatible properties, making con
gence results difficult. However, we have proved that if the approximation does convel
then the limit is a weak solution of the generalized KdV equation. Numerical computatic
reveal, with the certainty such computations offer, that the method does indeed conve
The operator splitting method is easy to implement on a computer, and one can com|
a variety of methods for each of the equations. We have tested the method numericall
applying selected numerical techniques to each of them. We find that all methods conv
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numerically, but at different rates. Numerical results are presented for one- and two-so
solutions of the KdV equations. For these and other examples we find that a combin:
of the fast Fourier transform with a Crank—Nicholson scheme (for Eq. (56)) and spec
viscosity method (for Eq. (55)) is the most accurate.

N
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