Exam 1 - 02/16/05
Math 241H

Name: SOLUTIONS

In your exam book, CLEARLY LABEL your solutions by number and part.

1. Let $\mathbf{a}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}, \mathbf{b}=3 \mathbf{i}-3 \mathbf{j}-3 \mathbf{k}, \mathbf{c}=\mathbf{i}+\mathbf{j}$.
[8] (a) Are \mathbf{a} and $\mathbf{b}-\mathbf{c}$ parallel, perpendicular, or neither? Explain.
$\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=2-12+6=-4 \neq 0$, hence the vectors are not perpendicular.
$\mathbf{a} \times(\mathbf{b}-\mathbf{c})=-17 \mathbf{i}+\cdots \neq \mathbf{0}$, hence the vectors are not parallel. You can also see directly that $\mathbf{b}-\mathbf{c}$ is not a scalar multiple of \mathbf{a}, and this also shows the vectors are not parallel.
[10] (b) Find the distance from the endpoint of \mathbf{a} to the line $\mathbf{r}(t)=\mathbf{b}+t \mathbf{c}$.
Take $P_{0}=(1,3,-2)$ (the end-point of \mathbf{a}). The direction vector of the line can be taken to be $\mathbf{L}=\mathbf{c}=\mathbf{i}+\mathbf{j}$. Take $P_{1}=(3,-3,-3)$, a point on the line. Then $\overrightarrow{P_{0} P_{1}}=2 \mathbf{i}-6 \mathbf{j}-\mathbf{k}$, and

$$
\mathbf{L} \times \overrightarrow{P_{0} P_{1}}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
2 & -6 & -1
\end{array}\right]=-\mathbf{i}+\mathbf{j}-8 \mathbf{k}
$$

Thus,

$$
D=\frac{\| \mathbf{L} \times \overrightarrow{P_{0} P_{1} \|}}{\|\mathbf{L}\|}=\frac{\sqrt{66}}{\sqrt{2}}=\sqrt{33}
$$

[5] (c) Find the volume of the parallelpiped with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
$\operatorname{vol}=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|=\left|\operatorname{det}\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]\right|=\left|\operatorname{det}\left[\begin{array}{ccc}1 & 3 & -2 \\ 3 & -3 & -3 \\ 1 & 1 & 0\end{array}\right]\right|=18$.
[7] (d) Find the equation of the plane \mathcal{P} whose normal is perpendicular to both \mathbf{a} and \mathbf{b} and which goes through the point $(0,1,1)$.

A choice for the normal vector is

$$
\mathbf{N}=\mathbf{a} \times \mathbf{b}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & -2 \\
3 & -3 & -3
\end{array}\right]=-15 \mathbf{i}-3 \mathbf{j}-12 \mathbf{k} .
$$

We can also use $\mathbf{N}=5 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$. The equation of the plane is

$$
5(x-0)+(y-1)+4(z-1)=0
$$

or

$$
5 x+y+4 z=5
$$

[8] (e) Find the distance between the plane \mathcal{P} in (d) and the point $(0,0,0)$.
Take $P_{0}=(0,1,1)$ (a point in the plane), and $P_{1}=(0,0,0)$. Then

$$
D=\frac{\left|\mathbf{N} \cdot \overrightarrow{P_{0} P_{1}}\right|}{\|\mathbf{N}\|}=\frac{|-1-4|}{\sqrt{42}}=\frac{5}{\sqrt{42}},
$$

since $\|\mathbf{N}\|=\|5 \mathbf{i}+\mathbf{j}+4 \mathbf{k}\|=\sqrt{42}$.
[10] 2. If the following limit exists, explain why and compute it. If the limit does not exist, explain why not.

$$
\lim _{t \rightarrow 1^{+}}\left(2+e^{\frac{1}{1-t}}\right) \mathbf{i}+\sqrt{t-1} \mathbf{j}+\ln (t) \mathbf{k}
$$

The limit does exist, because the limit of each component function exists. The main thing to check was the first component function. Observe that $\frac{1}{1-t} \rightarrow-\infty$ as $t \rightarrow 1^{+}$. Thus $e^{\frac{1}{1-t}} \rightarrow 0$ as $t \rightarrow 1^{+}$. Result: the limits of the other two component functions clearly being 0 , we get the final limit to be 21.
3. Suppose the velocity vector of a particle at time t is given by $\mathbf{v}(t)=-e^{-t} \mathbf{i}+t e^{t^{2}} \mathbf{j}+t \mathbf{k}$. [10] (a) Find the formula for the position vector $\mathbf{r}(t)$, if $\mathbf{r}(0)=-\mathbf{k}$.

$$
\text { Integrating } \mathbf{v}(t)=\mathbf{r}^{\prime}(t), \text { we find } \mathbf{r}(t)=\left(e^{-t}+x_{0}\right) \mathbf{i}+\left(\frac{1}{2} e^{t^{2}}+\right.
$$ $\left.y_{0}\right) \mathbf{j}+\left(\frac{1}{2} t^{2}+z_{0}\right) \mathbf{k}$, for some constants x_{0}, y_{0}, z_{0}. Plug in $t=0$ and set equal to $\mathbf{- k}$ to find the constants x_{0}, y_{0}, z_{0}. We get

$$
\mathbf{r}(t)=\left(e^{-t}-1\right) \mathbf{i}+\left(\frac{1}{2} e^{t^{2}}-\frac{1}{2}\right) \mathbf{j}+\left(\frac{1}{2} t^{2}-1\right) \mathbf{k}
$$

[10] (b) Find the acceleration vector $\mathbf{a}(t)$.
Just differentiate $\mathbf{v}(t)$, to get $\mathbf{a}(t)=e^{-t} \mathbf{i}+\left(e^{t^{2}}+2 t^{2} e^{t^{2}}\right) \mathbf{j}+\mathbf{k}$.
4. Let $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}+\sqrt{2} t \mathbf{k}$ be the parametrization of a curve.
[5] (a) Is this parametrization smooth? Explain.
Yes, because $\mathbf{r}^{\prime}(t)=e^{t} \mathbf{i}-e^{-t} \mathbf{j}+\sqrt{2} \mathbf{k}$ exists, is continuous, and is $\neq \mathbf{0}$, at every t.
[10] (b) Find the arclength of the curve traced out as t ranges from $t=1$ to $t=2$.

$$
\text { arclength }=\int_{1}^{2}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

which is

$$
\int_{1}^{2}\left(\sqrt{e^{2 t}+e^{-2 t}+2}\right) d t=\int_{1}^{2} e^{t}+e^{-t} d t=\left[e^{t}-e^{-t}\right]_{1}^{2}=e^{2}-e^{-2}-e^{1}+e^{-1}
$$

[10] (c) Find the curvature at $t=0$.
The easiest way is to use the formula $\kappa(0)=\frac{\|\mathbf{v}(0) \times \mathbf{a}(0)\|}{\|\mathbf{v}(0)\|^{3}}$. Note that $\mathbf{a}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}$, so that

$$
\mathbf{v}(0) \times \mathbf{a}(0)=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & \sqrt{2} \\
1 & 1 & 0
\end{array}\right]=-\sqrt{2} \mathbf{i}+\sqrt{2} \mathbf{j}+2 \mathbf{k}
$$

which has length $\sqrt{8}=2 \sqrt{2}$. Since $\|v(0)\|^{3}=8$, we see that the curvature is $1 / \sqrt{8}$.
[7] 5. Suppose a particle moves in \mathbb{R}^{3} in such a way that at all times, the velocity vector and the acceleration vectors are perpendicular. Prove that the speed of the particle is constant with respect to time.

Consider $\frac{d}{d t} \mathbf{v}(t) \cdot \mathbf{v}(t)$. By using the product rule for differentiation of dot products of two functions, this is $\mathbf{v}(t) \cdot \mathbf{v}^{\prime}(t)+$ $\mathbf{v}^{\prime}(t) \cdot \mathbf{v}(t)=2 \mathbf{v}(t) \cdot \mathbf{v}^{\prime}(t)$, which is zero by hypothesis. Thus, $\|v(t)\|$, being the square-root of the function $\mathbf{v}(t) \cdot \mathbf{v}(t)$ which has vanishing derivative everywhere, is constant.

