Quiz 1 - 02/02/05

Math 241H

Name:

1. (a) (4 points) Find a vector that is perpendicular to both $\mathbf{i}-3 \mathbf{j}-\mathbf{k}$ and $2 \mathbf{i}+2 \mathbf{j}$.

$$
\begin{aligned}
\left|\begin{array}{ccc}
i & j & k \\
1 & -3 & -1 \\
2 & 2 & 0
\end{array}\right| & =i(2)+j(-2)+k(2+6) \\
& =2 i-2 j+8
\end{aligned}
$$

(b) (4 points) Find the projection of $\mathbf{b}=\mathbf{i}+\mathbf{j}-2 \mathbf{k}$ onto $\mathbf{a}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$.

$$
\begin{aligned}
p r_{\underline{\mathrm{a}}}^{\underline{\mathrm{b}}} & =\left(\frac{\underline{\mathrm{a}} \cdot \underline{\mathrm{~b}}}{\mathrm{a} \cdot \underline{\mathrm{~b}}}\right) \underline{\mathrm{a}} \\
& =\frac{2}{9}(2 i+2-2 \\
4+2 j+k) & =\left(\left.\frac{4}{9} i+\frac{4}{9} j \right\rvert\, \frac{2}{9} k\right)
\end{aligned}
$$

2. Consider the lines ℓ_{1} and ℓ_{2}, defined as follows. The line ℓ_{1} contains the points $(2,1,-3)$ and $(0,-1,-1)$ and the line ℓ_{2} contains the points $(0,1,1)$ and $(1,2,0)$.
(a) (2 points) Find the vector equations for ℓ_{1} and ℓ_{2}.

$$
\begin{aligned}
& \ell_{1}:(0,-1,-1)+t(2,2,-2) \\
& \ell_{2}:(1,2,0)+t(1,1,-1)
\end{aligned}
$$

(b) (4 points) Find the parametric and symmetric equations for ℓ_{1}.

$$
\begin{array}{ll}
\text { Parametric } & \underline{\text { Symmetric }} \\
\begin{array}{l}
x=2 t \\
y=2 t-1
\end{array} & \frac{x}{2}=\frac{y+1}{2}=\frac{z+1}{-2} \\
z=-2 t-1 &
\end{array}
$$

(c) (6 points) These lines happen to be parallel. Explain why. Also, find the distance between the parallel lines ℓ_{1} and ℓ_{2}.

The lines are parallel because the vectors \underline{L}_{1} and \underline{L}_{2} are constant multiples of each other. Alternatively, we can show that $\underline{L}_{1} \times \underline{L}_{2}=0$
$P_{1}=(0,-1,-1)$ lies on ℓ_{1}
$P_{2}=(0,1,1)$ lies on ℓ_{2}
$\underline{L}=(1,1,-2)$
$\|\mathrm{L}\|=\sqrt{3}$

$$
\begin{aligned}
& \left\|\underline{\mathrm{L}} \times P_{1} P_{2}\right\|=\sqrt{16+4+4} \\
& =\sqrt{24} \\
& D=\frac{\left\|\underline{\mathrm{L}} \times P_{1} P_{2}\right\|}{\|\mathrm{L}\|} \\
& =\frac{\sqrt{24}}{\sqrt{4}}
\end{aligned}
$$

3. You are pushing a box up a slope that is inclined at an angle of $\pi / 6$ above horizontal.
(a) (5 points) How much work do you do if you push the box 100 feet up the slope, exerting a constant force of 15 lbs . in the horizontal direction? You may ignore the effects of friction.

Let \underline{u} be the vector in the direction of the slope, with length 100. Then:

$$
\begin{aligned}
\underline{\mathrm{u}} & =100\left(\cos \left(\frac{\pi}{6}\right) i+\sin \left(\frac{\pi}{6}\right) j\right) \\
& =100\left(\frac{\sqrt{3}}{2} i+\frac{1}{2} j\right) \\
& =50(\sqrt{3} i+j)
\end{aligned}
$$

Let $\underline{\underline{F}}$ be the force applied in the horizontal direction. $\underline{F}=15 i$. Then the work done is:

$$
\begin{aligned}
\underline{\mathrm{W}} & =\underline{\mathrm{F}} \cdot \underline{\mathrm{u}} \\
& =15 \cdot 50 \sqrt{3} \\
& =750 \sqrt{3}
\end{aligned}
$$

(b) (5 points) Suppose the slope is frictionless and that the box weights 20 lbs.. Suppose you push the box in the direction parallel to the slope. How much force do you need to exert in order to prevent the box from slipping down the frictionless slope?

$$
F=20 \cos \left(\frac{\pi}{3}\right)=10
$$

