Quiz 3 - 02/23/05

Math 241H

Name:

1. (a) (4 points) Find the domain of the function $f(u, v)=\ln \frac{u^{2}+v^{2}}{\left(u^{2}-v^{2}\right)^{2}}$.
$\frac{u^{2}+v^{2}}{\left(u^{2}-v^{2}\right)^{2}}$ is always positive, and it is finite when $u \neq \pm v$.
Hence, the domain is $\{(u, v) \mid u \neq \pm v\}$.
(b) (4 points) Sketch the quadric surface $x=z^{2}-2$ in \mathbb{R}^{3}.
2. For parts (a) and (b), determine whether the limit exists, and if so, evaluate it. Explain your answers.
(a) (5 points) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$.

$$
0 \leq|x| \leq \sqrt{x^{2}+y^{2}} \text { and } 0 \leq|y| \leq \sqrt{x^{2}+y^{2}}
$$

$$
=>0 \leq|x y| \leq x^{2}+y^{2}
$$

$$
=>0 \leq \frac{|x y|}{\sqrt{x^{2}+y^{2}}} \leq \sqrt{x^{2}+y^{2}}
$$

Since $\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}}=0$, by the squeeze theorem, we get $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=0$
(b) (2 points) $\lim _{(x, y) \rightarrow(1,1)} \frac{\cos ^{2}\left(x^{2} y \pi\right)+e^{x-y}}{x^{2}+\sin (3 y \pi / 2)}$.

Does not exist because $x^{2}+\sin (3 y \pi / 2) \rightarrow 0$
(c) (4 points) Is the following function continuous at $(0,0)$? Explain.

$$
f(x, y)= \begin{cases}\frac{x y^{3}}{x^{4}+y^{4}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

$f(x, y)$ is not continuous, since, along the line $y=x$ the function is equal to $1 / 2$ (ie. does not approach 0).
3. (a) (5 points) Verify that $z=\ln \left(x^{2}+y^{2}\right)$ satisfies Laplace's equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$.

$$
\begin{array}{lll}
\frac{\partial z}{\partial x}=\frac{2 x}{x^{2}+y^{2}} & => & \frac{\partial^{2} z}{\partial x^{2}}=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
\frac{\partial z}{\partial y}=\frac{2 y}{x^{2}+y^{2}} & => & \frac{\partial^{2} z}{\partial x^{2}}=\frac{2\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{array}
$$

Clearly $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$
(b) (6 points) Let $u(x, t)=e^{a x^{2}+b x t+c t^{2}}$ for a, b, c positive constants. Verify that u satisfies the wave equation $\frac{\partial^{2} u}{\partial x^{2}}=r^{2} \frac{\partial^{2} u}{\partial t^{2}}$ for $r=1$ at all x, t only if $a=c$ and $b=2 a$. (Feel free to use the back.)

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=(2 a x+b t) e^{a x^{2}+b x t+c t^{2}} & \frac{\partial u}{\partial t}=(b x+2 c t) e^{a x^{2}+b x t+c t^{2}} \\
\frac{\partial^{2} u}{\partial x^{2}}=\left\{2 a+(2 a x+b t)^{2}\right\} e^{a x^{2}+b x t+c t^{2}} & \frac{\partial^{2} u}{\partial^{2} t}=\left\{2 c+(b x+2 c t)^{2}\right\} e^{a x^{2}+b x t+c t^{2}}
\end{array}
$$

For $r=1$ the wave equation is

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} u}{\partial t^{2}} \\
2 a+(2 a x+b t)^{2} & =2 c+(b x+2 c t)^{2}
\end{aligned}
$$

Which is true only if $a=c$ and $b=2 a$.

