Some problems related to Stoke's and Divergence theorems

Math 241H

1. (a) Show by direct calculation that the divergence theorem does not hold for $\mathbf{F}(r, \theta, \psi)=$ $\frac{\mathbf{r}}{r^{2}}$, where \mathbf{r} denotes the unit radial vector. Why does the theorem fail?
(b) Verify by direct calculation that the divergence theorem does hold for the \mathbf{F} from part (a) when S is the surface S_{1} of a sphere of radius R_{1} plus the surface S_{2} of a sphere of radius R_{2}, both centered at the origin, and D is the region between the two surfaces?
(c) In general, what restriction must be placed on a surface S so that the divergence theorem will hold for the function of part (a)?
2. Use the divergence theorem to show that

$$
\iint_{S} \mathbf{n} d S=0
$$

where \mathbf{n} is the unit vector normal to the surface S.
3. Let S be the surface of the sphere $x^{2}+y^{2}+z^{2}=9$. Evaluate

$$
\int_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y
$$

using the divergence theorem.

