Problems for practice (highly recommended, but not to be handed in):
3.3.1, 3.3.2, 3.3.11
3.4.1, 3.4.3

Problems to be handed in:

1. Problems 3.3.13 and 3.3.14.
2. Problems 3.4.2 (use Proposition 3.4.2) and 3.5.4.
3. Consider the symmetric matrix $A=\left[\begin{array}{cccc}1 & -1 & -1 & -3 \\ -1 & 1 & -3 & -1 \\ -1 & -3 & 1 & -1 \\ -3 & -1 & -1 & 1\end{array}\right]$. Find the eigenvalues of A. Then find an orthogonal matrix P such that $P^{t} A P$ is diagonal.
4. (a) Suppose $f: A \rightarrow \mathbb{R}$ is integrable, and let $g=f$ except at finitely many points. Show that g is integrable, and $\int_{A} g=\int_{A} f$. (Hint: Show it is enough to assume $g=f$ at all but one point, and then do that case.)
(b) Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\left\{\begin{array}{l}
0, \quad x \text { irrational } \\
0 \quad x \text { rational, } y \text { irrational } \\
1 / q, \quad x \text { rational, } y=p / q \text { in lowest terms }
\end{array}\right.
$$

Show that f is integrable, and $\int_{[0,1] \times[0,1]} f=0$. (Hint: use the fact that for each n, there are only finitely many p / q in lowest terms with $q \leq n$.)
5. Using the definitions in terms of upper and lower sums, show that the following integral exists, and compute it:

$$
\int_{[0,2] \times[-1.1]} x^{2} 2^{y} .
$$

Now check your answer is correct by computing the integral using iterated integrals (Fubini's theorem).

