Homework 1 - due 09/12/03

Math 340

REMARK: Please note that in problem \#5, the ' superscript on g DOES NOT DENOTE the derivative of g ! I was simply using g^{\prime} to designate another function (a priori different from g). It would have been preferably if I had simply used another letter (say k) to denote this other function.
5. Show that if f has an inverse, then that inverse is unique. (Hint: suppose g and g^{\prime} are each inverse to f. Show that $g=g^{\prime}$ by considering the composition $\left.g \circ f \circ g^{\prime}\right)$. This result justifies our referring to THE inverse of f.

