Homework 3 - due 09/26/03
Math 340

Problems for practice (highly recommended, but not to be handed in):
1.5.1, 1.5.2, 1.5.4, 1.5.6, 1.5.21.

Problems to be handed in:

1. (a) Show that the function $\frac{x^{3} y}{x^{6}+y^{2}}$ approaches 0 as (x, y) approaches $(0,0)$ along every line and every parabola through the origin. Hint: the general parabola or line through the origin is of the form $y=a x^{2}+b x$ or $x=a y^{2}+b y$. (To get a line, take $a=0$.)
(b) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}$, or prove that it does not exist.
2. Problem 1.5.3.
3. Problem 1.5.7 (a), (b).
4. For each function below, find the set of points in \mathbb{R}^{2} where the function is continuous. Justify your answer using theorems covered in class.
(a)

$$
f(x, y)=\left\{\begin{array}{l}
\frac{\sin (x+y)}{\sqrt{x^{2}+y^{2}}}, \text { if }(x, y) \neq(0,0) \\
0, \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(b)

$$
g(x, y)=\left\{\begin{array}{l}
\frac{\sin \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}, \text { if }(x, y) \neq(0,0) \\
0, \text { if }(x, y)=(0,0)
\end{array}\right.
$$

5. Problem 1.5.23 (c), (d).
