Homework $4 \frac{1}{2}$ - do before Exam 1, 10/10/03

Math 340

Problems for practice (highly recommended, but not to be handed in):
1.5.23 (b,e)
1.8.1-1.8.4, 1.8.8, 1.8.12,
1.9.3

Section 1.10: Problems 1.6, 1.7, 1.8, 1.15, 1.17, 1.19, 1.27, 1.32.

More Problems:

1. Let $f(x, y)=x^{x^{x^{x^{y}}}}+(\log x)(\arctan (\arctan (\arctan (\sin (x y)))))$. Find $\frac{\partial f}{\partial y}(1, y)$. Hint: There is an easy way to do this.
2. Find the partial derivatives of the following functions.
(a) $f(x, y)=\sin (x \sin y)$.
(b) $f(x, y, z)=x^{y^{z}}$.
(c) $f(x, y)=h(x) g(y)$ (Express answer in terms of derivatives of h and g.)
(d) $f(x+y)=g\left(x^{2}+y\right)$ (Express in terms of derivative of g.)
3. Challenge Problem: (You may turn this in for extra credit before Exam 1.)
(a) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable. Suppose that f_{y} is identically zero. Prove that $f(x, y)$ is independent of the second variable. If $f_{x}=f_{y}=0$ everywhere, then show f is a constant.
(b) Suppose $A=\{(x, y) \mid x<0$, or $x \geq 0$ and $y \neq 0\}$. Suppose that $f: A \rightarrow \mathbb{R}$ is differentiable, with $f_{x}=f_{y}=0$ on A. Prove that f is constant. Hint: any two points in A may be connected by a sequence of lines each parallel to one of the axes.
