Homework 4 - due 10/03/03

Math 340

Problems for practice (highly recommended, but not to be handed in):

1.7.6, 1.7.7, 1.7.10, 1.7.11.

Problems to be handed in:

1. Problem 1.3.22.
2. Problem 1.7.12.
3. Problems 1.7.19 and 1.7.22.
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Prove that T is continuous. Hint: We explained briefly in class how to prove that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}_{n}} T(\mathbf{h})=\mathbf{0}_{m},
$$

where \mathbf{O}_{n} denotes the zero vector in \mathbb{R}^{n}. This of course would prove that T is continuous at the origin in \mathbb{R}^{n}. Give the details of that argument, and then use that result to prove that T is continuous everywhere else.
5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
(a) Prove that T is differentiable.
(b) Find the Jacobian of T at any $\mathbf{a} \in \mathbb{R}^{n}$.

