Homework $10 - due \ 05/07/04$

Math 341

Problems to be handed in:

- 1. Braun 3.10, # 13, 17.
- 2. Braun 3.11, # 4, 7, 17.
- 3. Braun 3.12, # 2, 3, 5, 6, 8-10.

4. Theorem. Every $n \times n$ matrix with complex entries can be put into Jordan normal form.

More precisely, if $A \in M_n(\mathbb{C})$, then there exists an invertible $n \times n$ complex matrix P such that $P^{-1}AP$ is in *Jordan normal form*, that is, it consists of block matrices down the diagonal, each block (called a *Jordan block*) being of form

λ	1	• • •	•••	0)	
0	λ	1	•••	0	
$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$		۰.			
0	• • •		λ	1	
$\setminus 0$		•••		$\bar{\lambda}$	

(Aside from the block matrices down the diagonal, all the other entries are zero.) For example, the following matrix is in Jordan normal form:

	(2)	1	0	0	$0 \rangle$
	0	$\frac{1}{2}$	0	0	0
	0	0	2	1	0
	0	0	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	2	0
1	0	0	0	0	3/

and it has three Jordan blocks in it.

Clearly the entries down the diagonals in the various Jordan blocks in $P^{-1}AP$ are nothing other than the eigenvalues of A.

Suppose that given A, you know a matrix P such that $P^{-1}AP$ is in Jordan normal form. Explain how you can use this to completely solve the differential equation $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$. Hint: Can you compute explicitly $e^{P^{-1}APt}$?