Recommended problems:
Problems to be handed in:

1. Find a parametrization for the curve Γ and evaluate the line integral of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, where $f(x, y, z)=x y z$ and
(a) $\operatorname{Im} \Gamma$ is the polygon whose successive vertices are $(0,0,1),(0,1,1)$, and $(1,2,3)$.
(b) $\operatorname{Im} \Gamma$ is the unit circle in the plane $z=1$ with center $(1,1,1)$.
2. Evaluate the line integral of the vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $\mathbf{F}(x, y, z)=$ $(2 x, z, y)$ over the line Γ defined by $\alpha(t)=\left(t, t^{2}, t^{3}\right)$. (This line is called the twisted cubic.)
3. (a) Show that the relation " α is equivalent to β " is an equivalence relation.
(b) Show that the relation " α is o-equivalent to β " is an equivalence relation.
4. (a) Find a potential function for each of the following force fields and determine the work required to move a particle from the point \mathbf{v}_{0} to \mathbf{v}_{1}. (The work done is $-\int_{\Gamma} \mathbf{F}$ since one pushes against the force.)
(i) $\mathbf{F}(x, y, z)=\left(2 x y, x^{2}+z, y\right), \mathbf{v}_{0}=(1,3,2), \mathbf{v}_{1}=(2,3,1)$.
(ii) $\mathbf{F}\left((x, y, z)=(y z \cos (x y z), x z \cos (x y z), x y \cos (x y z)), \mathbf{v}_{0}=(1,1,0), \mathbf{v}_{1}=(1 / 3,1 / 2,2 \pi)\right.$.
(b) Show that if $\mathbf{F}=\left(F_{1}, \ldots, F_{n}\right)$ is a conservative vector field on \mathbb{R}^{n}, then

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}
$$

on \mathbb{R}^{n}, for all i, j.
5. We say $\alpha:[a, b] \rightarrow \mathbb{R}^{n}$, a parametrization of Γ, is a parametrization by arc-length if for all $t_{0} \in[a, b]$, the length of the piece of α between $t=a$ and $t=t_{0}$ is exactly $t_{0}-a$. Show that α is a parametrization by arc-length if and only if

$$
\left|\alpha^{\prime}(t)\right|=1
$$

for all t. (Remember that we are assuming $\alpha^{\prime}(t)$ is a continuous function of t.)

