Recommended problems:

1. (a) Let \mathbf{F} be a C^{2}-vector field on an open region $U \subset \mathbb{R}^{3}$. Show that $\operatorname{div} \operatorname{curl} \mathbf{F}=0$. (b) Let $f: U \rightarrow \mathbb{R}$ be a C^{2}-function (U as above). Show that curl $\operatorname{grad} f=\mathbf{0}$.
2. Let S be the surface of the sphere $(x-2)^{2}+(y-3)^{2}+(z-1)^{2}=25$. Evaluate

$$
\int_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y
$$

3. Let D be a closed and bounded region in \mathbb{R}^{3}, and suppose that Gauss' theorem can be applied to D and ∂D. Show that the volume of D is given by

$$
\operatorname{Vol}(D)=\int_{\partial D} x d y d z=\int_{\partial D} y d z d x=\int_{\partial D} z d x d y
$$

4. Prove Green's identities: If f and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are C^{2}-functions in the region D (as above), then

$$
\int_{D}(f \Delta g+(\nabla f \cdot \nabla g))=\int_{\partial D} f \nabla g
$$

and

$$
\int_{D}(f \Delta g-g \Delta f)=\int_{\partial D}(f \nabla g-g \nabla f) .
$$

Here

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

is the Lapacian of f, and $\nabla f=\operatorname{grad} f$. (Hint: Let $\mathbf{F}=f \nabla g$ in Gauss' theorem.)
5. (a) Let C be any closed and bounded region of \mathbb{R}^{3} which does not contain the origin, and let $\mathbf{F}(\mathbf{v})=\frac{\mathbf{v}}{|\mathbf{v}|^{3}}$. Show that

$$
\int_{\partial C} \mathbf{F}=0 .
$$

(b) Let V be a ball in \mathbb{R}^{3} centered at the origin, and let \mathbf{F} be as in (a). Show that

$$
\int_{\partial V} \mathbf{F}=4 \pi .
$$

